

Adapting Parallel Backprojection to an FPGA Enhanced Distributed
Computing Environment

Albert A. Conti, Ben Cordes, Miriam Leeser, Eric Miller
{aconti, bcordes, mel, elmiller}@ece.neu.edu
Dept. Electrical and Computer Engineering

Northeastern University, Boston, MA

Richard Linderman
Richard.Linderman@rl.af.mil

 AFRL/IF, Rome, NY

Introduction
Synthetic Aperture Radar (SAR) is a widely used method
for generating radar images in applications ranging from
remote sensing of the environment to target identification.
Unfortunately, SAR generates a large amount of data for
image reconstruction, and processing speeds on
conventional computers are typically slow. Backprojection
is a highly parallel algorithm for SAR reconstruction that
maps well to distributed computing environments and
reconfigurable logic. We have developed an
implementation of backprojection for SAR on a
Heterogeneous High Performance Cluster (HHPC). Our
implementation uses multiple nodes of the cluster and the
COTS FPGA boards available at each node. The resulting
implementation runs a factor of 26 times faster than our
efficient serial implementation and can reconstruct images
from SAR data in a matter of seconds.

The HHPC used in our system is part of the Distributed
Center at the Air Force Research Labs in Rome, NY. It is a
two chassis, 48 node heterogeneous HPC from HPTi, which
marries the benefits of Beowulf cluster computing with the
reconfigurability of FPGAs. Each node is a Linux box with
dual Xeon processors and an Annapolis Wildstar II FPGA
board with two Virtex6000 FPGAs. The nodes are
interconnected with Myrinet 64-bit PCI cards that provide a
maximum bisectional bandwidth of 12 GB/s. The system is
designed for a throughput of 422 GFLOPS from the
Beowulf cluster, and 34 FIR Tera OPS from the FPGAs.

Implementation
The backprojection algorithm is well suited for parallelism
in term of both the input (radar projections) and the output
(pixels in the image). After an analysis of the processing
and file I/O requirements of the algorithm and an
experimental examination of the HHPC’s file system and
communication capabilities, we decided on the optimal
extent of parallelism at the software and hardware levels.

At the software level, the target image is split into equal
partitions, each of which is processed by the hardware at a
single node. Projection data are distributed such that only
time samples that contribute to pixels within each node’s
respective partition are loaded into the memory of that
node. Once all the input data have been loaded in the
memory of each node, projections are sequentially uploaded
to the FPGA boards. The hardware iterates through the
projection data and then downloads its portion of the target
area to the local host PC.

The MPICH parallel computation library is used to control
the multiple nodes of the HHPC. MPICH implicitly links
in the GM libraries, which enable the use of the Myrinet
interconnect to pass data between nodes. Our system runs
on a single master node that is responsible for file I/O and
controlling the computation on each of the slave nodes.
Once the slave nodes have downloaded result images from
the FPGA board, the data are collected by the master node,
merged, and written out to a file. This accumulation and
output stage takes 40% of the total system run time. Later
versions of the MPI library, which were unavailable to us
on the HHPC, support features such as parallel file I/O that
could be used to improve these bottlenecks.

Figure 1. Block Diagram of Hardware On FPGA Device

The hardware on the FPGA board (see Figure 1) includes
memories to hold a portion of the target image plus all the
projection data needed to calculate the new image. Glue
logic connects the on-board PCI interface to the logic on the
chip, and a series of control registers handle commands and
status information. A monolithic state machine reads the
control registers and sequences the flow of data through the
computation units. Swath logic (see below) computes a
time index into the projection data based on the pixel in the
target image that is currently being considered.
Intermediate target images are read from the on-board
SRAM, accumulated with the data from the projections that
are currently in memory, and written back to another
SRAM. The SRAMs switch read/write roles at each
processing step, resulting in a “ping-pong” effect.

Each pixel in the final SAR image is a coherent
superposition of the contributions from every radar return in
a given data set. Determining which value in a given return
contributes to a specific pixel is carried out via a mapping
function. This function reflects the round trip travel time of
a pulse of energy back and forth between the radar (at a
known position along its flight path) and the location on the
ground corresponding to the pixel. In our system, this
mapping of pixel value to temporal index into a radar

return array is carried out by the processing unit labeled
"Swath Logic."

Optimization
We explored several different avenues of parallelization to
improve speedup. Since the contribution of a projection to
the target image is independent of all the other projections,
we can pipeline multiple projection computation units
together to increase performance. Adding this functionality
provides a 40% runtime performance gain, but an overall
system performance gain of only 10% over a system that
processes a single projection at a time. The performance
boost is small due to the dominance of file I/O.

Similar effects can be achieved by processing multiple
pixels simultaneously; more memory bandwidth is required,
but our current design does not saturate the available
memory ports. Both of these avenues of parallelization
quickly reach diminishing returns, since as the level of
parallelization increases, the portion of the overall run time
that is due to this computation becomes smaller and
smaller.

The pixel-to-time mapping function can either be computed
or read out of a table. Reading from a table is slightly faster
but requires more coefficients to be uploaded to the FPGA
and more on-chip memories to be used. Moving from table
lookup to computation logic did not noticeably affect
performance; see Figure 2, where the “1K Swath SRAM”
and “1K Swath Logic” lines are nearly overlapping.
However, using logic instead of a table greatly eased the
implementation of the multiple-projection optimization
above.

The number of samples of projection data that are uploaded
correlates directly to the resolution of the final image.
Also, as the number of samples increases, the hardware
solution shows better performance when compared to the
software implementation. Our tests showed that the
resolution does not significantly improve after 4k samples
per projection, and the corresponding increased coefficient
upload times are not a good tradeoff.

Results
Figure 2 shows a runtime performance comparison of
multiple parallel hybrid solutions. The results are
normalized to the runtime of an efficient serial software
solution processing the same amount of data, which is listed
as the point (0,1) for all four series of data. The fastest and
most scalable solution computes the swath array in logic
and processes four projections in parallel. The falloff in
performance gains as the number of processor nodes
increases is primarily due to the dominance of file I/O on
the run time. This necessary data transfer to and from disk
is the main barrier to further acceleration with the current
HHPC platform. Improved file I/O of the cluster would
result in better performance.

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

Number of Hardware Nodes Used (0=software)

1K, Swath SRAM 1K, Swath logic

4K, Swath Logic 4x4K, Logic

Figure 2. System Performance Across Several
Implementations of the Parallel Solution

Acknowledgement
This publication made possible through support provided
by DoD High Performance Computing Modernization
Program (HPCMP) Programming Environment and
Training (PET) activities through Mississippi State
University under the terms of Contract No. N62306-01-D-
7110.

References
[1] M. Soumekh, “Synthetic Aperture Radar Signal Processing

with MATLAB Algorithms”. John Wiley and Sons, New
York, 1999. ISBN 0-471-29706-2

[2] S. Coric, M. Leeser, E. Miller, and M. Trepanier, “Parallel-
Beam Backprojection: an FPGA Implementation Optimized
for Medical Imaging”. Tenth ACM International Symposium
on Field-Programmable Gate Arrays, February, 2002.

