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Introduction 
Synthetic Aperture Radar (SAR) is a widely used method 
for generating radar images in applications ranging from 
remote sensing of the environment to target identification.  
Unfortunately, SAR generates a large amount of data for 
image reconstruction, and processing speeds on 
conventional computers are typically slow.  Backprojection 
is a highly parallel algorithm for SAR reconstruction that 
maps well to distributed computing environments and 
reconfigurable logic.  We have developed an 
implementation of backprojection for SAR on a 
Heterogeneous High Performance Cluster (HHPC).  Our 
implementation uses multiple nodes of the cluster and the 
COTS FPGA boards available at each node.  The resulting 
implementation runs a factor of 26 times faster than our 
efficient serial implementation and can reconstruct images 
from SAR data in a matter of seconds. 

The HHPC used in our system is part of the Distributed 
Center at the Air Force Research Labs in Rome, NY.  It is a 
two chassis, 48 node heterogeneous HPC from HPTi, which 
marries the benefits of Beowulf cluster computing with the 
reconfigurability of FPGAs.  Each node is a Linux box with 
dual Xeon processors and an Annapolis Wildstar II FPGA 
board with two Virtex6000 FPGAs.  The nodes are 
interconnected with Myrinet 64-bit PCI cards that provide a 
maximum bisectional bandwidth of 12 GB/s.  The system is 
designed for a throughput of 422 GFLOPS from the 
Beowulf cluster, and 34 FIR Tera OPS from the FPGAs. 

Implementation 
The backprojection algorithm is well suited for parallelism 
in term of both the input (radar projections) and the output 
(pixels in the image). After an analysis of the processing 
and file I/O requirements of the algorithm and an 
experimental examination of the HHPC’s file system and 
communication capabilities, we decided on the optimal 
extent of parallelism at the software and hardware levels.   

At the software level, the target image is split into equal 
partitions, each of which is processed by the hardware at a 
single node.  Projection data are distributed such that only 
time samples that contribute to pixels within each node’s 
respective partition are loaded into the memory of that 
node.  Once all the input data have been loaded in the 
memory of each node, projections are sequentially uploaded 
to the FPGA boards.  The hardware iterates through the 
projection data and then downloads its portion of the target 
area to the local host PC.   

The MPICH parallel computation library is used to control 
the multiple nodes of the HHPC.  MPICH implicitly links 
in the GM libraries, which enable the use of the Myrinet 
interconnect to pass data between nodes.  Our system runs 
on a single master node that is responsible for file I/O and 
controlling the computation on each of the slave nodes.  
Once the slave nodes have downloaded result images from 
the FPGA board, the data are collected by the master node, 
merged, and written out to a file.  This accumulation and 
output stage takes 40% of the total system run time.  Later 
versions of the MPI library, which were unavailable to us 
on the HHPC, support features such as parallel file I/O that 
could be used to improve these bottlenecks. 

 
Figure 1. Block Diagram of Hardware On FPGA Device 

The hardware on the FPGA board (see Figure 1) includes 
memories to hold a portion of the target image plus all the 
projection data needed to calculate the new image.  Glue 
logic connects the on-board PCI interface to the logic on the 
chip, and a series of control registers handle commands and 
status information.  A monolithic state machine reads the 
control registers and sequences the flow of data through the 
computation units.  Swath logic (see below) computes a 
time index into the projection data based on the pixel in the 
target image that is currently being considered.  
Intermediate target images are read from the on-board 
SRAM, accumulated with the data from the projections that 
are currently in memory, and written back to another 
SRAM.  The SRAMs switch read/write roles at each 
processing step, resulting in a “ping-pong” effect. 

Each pixel in the final SAR image is a coherent 
superposition of the contributions from every radar return in 
a given data set.  Determining which value in a given return 
contributes to a specific pixel is carried out via a mapping 
function.  This function reflects the round trip travel time of 
a pulse of energy back and forth between the radar (at a 
known position along its flight path) and the location on the 
ground corresponding to the pixel.   In our system, this 
mapping of pixel value to temporal index into a radar 



 

return array is carried out by the processing unit labeled 
"Swath Logic." 

Optimization 
We explored several different avenues of parallelization to 
improve speedup.  Since the contribution of a projection to 
the target image is independent of all the other projections, 
we can pipeline multiple projection computation units 
together to increase performance.  Adding this functionality 
provides a 40% runtime performance gain, but an overall 
system performance gain of only 10% over a system that 
processes a single projection at a time.  The performance 
boost is small due to the dominance of file I/O.   

Similar effects can be achieved by processing multiple 
pixels simultaneously; more memory bandwidth is required, 
but our current design does not saturate the available 
memory ports.  Both of these avenues of parallelization 
quickly reach diminishing returns, since as the level of 
parallelization increases, the portion of the overall run time 
that is due to this computation becomes smaller and 
smaller.   

The pixel-to-time mapping function can either be computed 
or read out of a table.  Reading from a table is slightly faster 
but requires more coefficients to be uploaded to the FPGA 
and more on-chip memories to be used.  Moving from table 
lookup to computation logic did not noticeably affect 
performance; see Figure 2, where the “1K Swath SRAM” 
and “1K Swath Logic” lines are nearly overlapping.  
However, using logic instead of a table greatly eased the 
implementation of the multiple-projection optimization 
above. 

The number of samples of projection data that are uploaded 
correlates directly to the resolution of the final image.  
Also, as the number of samples increases, the hardware 
solution shows better performance when compared to the 
software implementation.  Our tests showed that the 
resolution does not significantly improve after 4k samples 
per projection, and the corresponding increased coefficient 
upload times are not a good tradeoff. 

Results 
Figure 2 shows a runtime performance comparison of 
multiple parallel hybrid solutions.  The results are 
normalized to the runtime of an efficient serial software 
solution processing the same amount of data, which is listed 
as the point (0,1) for all four series of data.  The fastest and 
most scalable solution computes the swath array in logic 
and processes four projections in parallel.  The falloff in 
performance gains as the number of processor nodes 
increases is primarily due to the dominance of file I/O on 
the run time.  This necessary data transfer to and from disk 
is the main barrier to further acceleration with the current 
HHPC platform.  Improved file I/O of the cluster would 
result in better performance.   
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Figure 2. System Performance Across Several 
Implementations of the Parallel Solution 
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