
The Scalable Software Interconnect for Distributed Radar Signal
Jeff Rudin, Mercury Computer Systems, Inc., jrudin@mc.com
Luke Cico, Mercury Computer Systems, Inc., lcico@mc.com
Ken Cain, Mercury Computer Systems, Inc., kcain@mc.com
Myra Prelle, Mercury Computer Sstems, Inc.,mprelle@mc.com

Ethan Luce, Raytheon, Ethan_C_Luce@raytheon.com
Terri O’Connor, Raytheon, Teresa_L_OConnor@raytheon.com

This paper describes an analysis of a real radar problem,
mapping it to a multicomputer, and in particular
implementing with a high-performance, high-productivity
Data Reorganization Interface (DRI) based middleware.

Modern multi-channel radar systems must perform a variety
of processing tasks such as pulse compression,
beamforming, and clutter filtering. These processing steps
are typically performed over a contiguous set of pulses that
form a coherent-processing interval (CPI). The three
processing dimensions of the CPI – range, pulse number,
and channel – permit it to be viewed as a three-dimensional
(3D) data cube. Each one of these tasks is performed across
a different “dimension” of the data cube. For example,
pulse compression is performed across the range (fast-time)
dimension, whereas clutter-filtering is performed along the
pulse (slow-time) dimension, and beamforming is
performed across the channel dimension of the data cube.

Usually, the amount of computation required to perform
this processing in real-time exceeds the capacity of a single
processor. As a consequence, parallel computation
techniques are required to meet real-time requirements. The
processing steps are allocated into a pipeline of stages,
where each stage consists of a set of parallel processors. At
each stage, the data is organized such that the dimension to
be processed is arranged linearly in memory in order to
realize high data access rates. Consequently, due to the
change in the dimension which is processed in each stage, it
is necessary to reorganize and repartition the radar data
cube between stages.

The required reorganization and redistribution of the radar
data cube among the processors between different stages is
best performed using direct memory access (DMA)
controllers. However, if this inter-stage communication was
implemented using a point-to-point protocol, the
management of the multitude of DMA transfers becomes
tedious, error prone, and difficult to scale. What is needed
is an approach that automatically manages the many
individual DMA transfers required to effect the inter-stage
data reorganization, thereby masking the details of the
individual DMA transfers from the user. This automated
approach is affected by interprocessor communications
middleware based on the DRI.

We will present the mapping a radar processor (signal
conditioning, pulse compression, Doppler filtering, weight
computation, beamforming, CFAR) onto a multicomputer
with particular focus on the implementation using high-
performance middleware that provides data reorganization
and redistribution. Special emphasis will be made on the
decomposition of the functional processing blocks into a
multi-buffered, data-flow model that overlaps
communications and mathematical computations, and how
the Data Re-Organization Interface, as implemented on the
Mercury Parallel Application System (PAS) middleware,
can be used to manage the data flow and work flow of the
distributed objects through the various stages of the radar
processing pipeline. We will describe how this middleware
permits a variety of inter-stage reorganization/redistribution
strategies to be implemented with a simplified
programming model. We will also provide comparative
performance data against a point-to-point protocol
implementation.

DMA

CE-

CE-

CE-

CE-
CE-

X1,

Kr,1

X1,r,

1

X1,3

,1

X1,2

,1

X1,1

,1

X1,

Kr,2

X1,r,

2

X1,3

,2

X1,2

,2

X1,1

,2

XKp

c,1,K

Xp,1

,Kc

X3,1

,Kc

X2,1

,Kc

X1,1

,Kc

XKp

b,r,K

Xp,r,

Kb

X3,r,

Kb

X2,r,

Kb

X1,r,

Kb

XKp

Kr,K,

Xp,

r,KbK

X3,

r,KbK

X2,

r,KbK

X1,

r,KbK

CE- CE- CE-

XK,

2,Kc

Xp,2

,Kc

X3,2

,Kc

X2,2

,Kc

X1,2

,Kc

CE-

XKp

b,3,K

Xp,3

,Kb

X3,3

,Kb

X2,3

,Kb

X1,3

,Kb

CE-
CE- CE- CE-CE- CE-

XKp

,1,1

Xp,1

,1

X3,1

,1

X2,1

,1

X1,1

,1

XKp

,r,1

Xp,r,

1

X3,r,

1

X2,r,

1

X1,r,

1

XKp

,Kr,1

Xp,

Kr,1

X3,

Kr,1

X2,

Kr,1

X1,

Kr,1

XKp

,2,1

Xp,2

,1

X3,2

,1

X2,2

,1

X1,2

,1

XKp

,3,1

Xp,3

,1

X3,3

,1

X2,3

,1

X1,3

,1

Figure 1. Inter-stage data reorganization and redistribution.

