

Implementation of Floating-Point VSIPL Functions on FPGA-Based
Reconfigurable Computers Using High-Level Languages

Malachy Devlin1, Robin Bruce2 and Stephen Marshall3

1Nallatech, Boolean House, 1 Napier Park, Glasgow, UK, G68 0BH, m.devlin@nallatech.com
2Institute of System Level Integration, Alba Centre, Alba Campus, Livingston, EH54 7EG, UK, rbruce@sli-institute.ac.uk

3Strathclyde University, 204 George Street, Glasgow G1 1XW, s.marshall@eee.strath.ac.uk

Introduction1

The evolution of FPGAs have advanced to the stage where
high-capacity devices offering dedicated silicon for
accelerating mathematical operations are available. The
latest families offer up to 512 dedicated MAC (Multiply
and Accumulate) units providing a performance capability
of 256GMACs/s on 18-bit data. Complemented by a
programmable-logic fabric, this allows for algorithm-
dependent implementations. Typically, when FPGAs have
been used to achieve high-performance computing solutions
it has been with integer and bit-level algorithm
implementations only. There has been a perception that
microprocessors are still required to implement floating-
point algorithms and that FPGAs are weak in this area. This
is no longer the case, and FPGAs are now capable of
implementing effectively both single and double-precision
floating-point algorithms.

Floating-Point Cores on FPGAs
FPGAs can now outperform microprocessors in carrying
out both single-precision and double-precision floating-
point operations.[1] Xilinx’s V-II Pro is capable of offering
over 25GFLOPS/s of single-precision peak performance,
with approximately a quarter of this performance possible
for double-precision floating point. The current trends in
FPGA performance produced by advances in
semiconductor technology will yield FPGA devices with a
factor of three to eight more peak floating-point
performance than comparable microprocessors by 2009.[2]

VSIPL
The Vector, Signal and Image Processing Library is an
open standard API for highly efficient and portable
computational middleware for signal and image-processing
applications. This library has typically been targeted at
microprocessors and is provided as a C or C++ API. This
library is aimed at high-performance applications and
therefore has capabilities of handling a range of data types,
including integer and floating point.[3]

This paper will look at the implementation of these libraries
on FPGAs, aiming to provide to the FPGA developer the
same level of abstraction on the FPGA from this
middleware functionality as the software developer has
traditionally had with the original APIs on microprocessors.

1This research is sponsored by Nallatech in conjunction with the Institute
for System Level Integration and the University of Strathclyde.

Tools and Hardware
All FPGA implementations are targeted to Nallatech
reconfigurable computing systems based on commercial
off-the-shelf products. This enables deployment in a range
of form factors, such as VME, cPCI, PCI 104 etc, on which
VSIPL can be targeted.

The communications between host and system, between
functions and between multiple FPGAs takes place over
DIMETalk networks, created using the DIMETalk design
GUI application. Entities in the system are nodes in a
packet-switched network, with routers to connect nodes and
bridges to connect FPGAs[4].

The initial implementations will use Nallatech’s single
precision floating-point cores, with easy extension to their
double precision versions. These are implemented
specifically for Xilinx FPGAs and are optimized for
resource and performance.[5]

Implementation of Floating-Point Algorithms
on FPGAs
The work that this paper represents can be seen as laying
the foundations in the development of a VSIPL-compliant
API to allow application developers to take advantage of
the capabilities of FPGA computing with no more expertise
than they would require using the same API in conjunction
with a standard microprocessor.

The first step towards this goal is to demonstrate the
implementation of key floating-point VSIPL functions on
FPGAs. These algorithms are taken from the TASP VSIPL
Core Plus Plus profile of the VSIPL API v1.1. These
algorithms are initially implemented as ANSI C functions.
To implement these functions in hardware they must first
be prepared for compilation to VHDL by re-structuring the
code so as to aid a compiler in finding parallelism and
opportunities for pipelining that will lead to time gains over
serial execution.

Ideally, one would implement all desired VSIPL API
functions at least once on a multi-FPGA system with
associated data storage capabilities. This, however, is
overly demanding on FPGA resource and is not a practical
solution.

The next best solution would be to implement the system
seen in figure 1 below. In this set-up each individual
function is instantiated dynamically on the FPGA as and
when it is required, according to the algorithm running on
the host. This would require functions to be pre-compiled
for hardware and a versatile communications network to
handle the changing functions on the FPGA. To be a
worthwhile contender to a microprocessor-only
implementation the following relationship needs to be
satisfied:

[] proc

N

N
unloadexecloadboottotal tNtNtNttt

f

<+++= ∑
=0

)()()((1)

Where ttotal is the total execution time for the entire
algorithm, which consists of Nf VSIPL functions, in
hardware, tboot is the time taken to load the next function in
the algorithm onto the FPGA, tload is the time taken to
provide the function with the necessary data, texec is the time
taken to obtain a result and tunload is the time taken to send
the output data to its destination. tproc is the processing time
for the algorithm when implemented solely on a
microprocessor.

Figure 1: Ideal System Set-up

Before being able to implement the system shown in figure
1, which one could easily envisage as being VSIPL-
compliant, one must overcome a number of difficulties.
These range from problems with refreshing DRAM,
bottlenecks in loading functions onto the FPGA and the
potential limitations on communications latency and
bandwidth.

The architecture shown in figure 2 below shows an initial
set-up to demonstrate the performance of the VSIPL
floating-point functions implemented in hardware. The
entire algorithm is implemented in hardware with the host
simply initializing the system, sending the input data and
receiving the end result.

In order to achieve an improvement over a microprocessor-
based implementation the following worst case relationship
must be satisfied:

[] proc

N

N
execunloadloadboottotal tNttttt

f

<+++= ∑
=0

)((2)

Figure 2: Initial System Set-up

The more functions an algorithm utilizes, the more silicon
real-estate is taken up. Eventually on large algorithms a
single device will no longer suffice for implementation. We
will also therefore be demonstrating the partitioning and
system control on multi-FPGA systems of these high-
capacity algorithms.

References
 [1] Underwood K, Hemmert K, Closing the gap: CPU and

FPGA trends in sustainable floating-point BLAS
performance, Field-Programmable Custom Computing
Machines, 2004. FCCM 2004. 12th Annual IEEE
Symposium on (2004), pp. 219-228.

[2] K. D. Underwood. FPGAs vs. CPUs: Trends in peak floating-
point performance. In Proceedings of the ACM International
Symposium on Field Programmable Gate Arrays, Monterrey,
CA, February 2004.

[3] Vector Signal Image Processing Library, VSIPL website,
www.vsipl.org

[4] Craig Sanderson, Simplify FPGA Application Design with
DIMEtalk, Xcell journal, winter 2004

[5] Floating Point Math IP, www.nallatech.com

Host Fabric

 Mem

f1;
f2;
f3;
f4;
etc

fN

Host Fabric

 Mem

Send
& rcv
data

f1;
f ; 2
f3;
f4;
etc

f1;
f2;
f3;
f4;
etc

