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Introduction1

The evolution of FPGAs have advanced to the stage where 
high-capacity devices offering dedicated silicon for 
accelerating mathematical operations are available. The 
latest families offer up to 512 dedicated MAC (Multiply 
and Accumulate) units providing a performance capability 
of 256GMACs/s on 18-bit data. Complemented by a 
programmable-logic fabric, this allows for algorithm-
dependent implementations. Typically, when FPGAs have 
been used to achieve high-performance computing solutions 
it has been with integer and bit-level algorithm 
implementations only. There has been a perception that 
microprocessors are still required to implement floating-
point algorithms and that FPGAs are weak in this area. This 
is no longer the case, and FPGAs are now capable of 
implementing effectively both single and double-precision 
floating-point algorithms.  
 
Floating-Point Cores on FPGAs 
FPGAs can now outperform microprocessors in carrying 
out both single-precision and double-precision floating-
point operations.[1] Xilinx’s V-II Pro is capable of offering 
over 25GFLOPS/s of single-precision peak performance, 
with approximately a quarter of this performance possible 
for double-precision floating point. The current trends in 
FPGA performance produced by advances in 
semiconductor technology will yield FPGA devices with a 
factor of three to eight more peak floating-point 
performance than comparable microprocessors by 2009.[2] 

VSIPL 
The Vector, Signal and Image Processing Library is an 
open standard API for highly efficient and portable 
computational middleware for signal and image-processing 
applications. This library has typically been targeted at 
microprocessors and is provided as a C or C++ API. This 
library is aimed at high-performance applications and 
therefore has capabilities of handling a range of data types, 
including integer and floating point.[3] 

This paper will look at the implementation of these libraries 
on FPGAs, aiming to provide to the FPGA developer the 
same level of abstraction on the FPGA from this 
middleware functionality as the software developer has 
traditionally had with the original APIs on microprocessors.  
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Tools and Hardware 
All FPGA implementations are targeted to Nallatech 
reconfigurable computing systems based on commercial 
off-the-shelf products. This enables deployment in a range 
of form factors, such as VME, cPCI, PCI 104 etc, on which 
VSIPL can be targeted.  
 
The communications between host and system, between 
functions and between multiple FPGAs takes place over  
DIMETalk networks, created using the DIMETalk design 
GUI application. Entities in the system are nodes in a 
packet-switched network, with routers to connect nodes and 
bridges to connect FPGAs[4]. 
 
The initial implementations will use Nallatech’s single 
precision floating-point cores, with easy extension to their 
double precision versions. These are implemented 
specifically for Xilinx FPGAs and are optimized for 
resource and performance.[5]

 

Implementation of Floating-Point Algorithms 
on FPGAs 
The work that this paper represents can be seen as laying 
the foundations in the development of a VSIPL-compliant 
API to allow application developers to take advantage of 
the capabilities of FPGA computing with no more expertise 
than they would require using the same API in conjunction 
with a standard microprocessor. 

The first step towards this goal is to demonstrate the 
implementation of key floating-point VSIPL functions on 
FPGAs. These algorithms are taken from the TASP VSIPL 
Core Plus Plus profile of the VSIPL API v1.1. These 
algorithms are initially implemented as ANSI C functions. 
To implement these functions in hardware they must first 
be prepared for compilation to VHDL by re-structuring the 
code so as to aid a compiler in finding parallelism and 
opportunities for pipelining that will lead to time gains over 
serial execution.  

Ideally, one would implement all desired VSIPL API 
functions at least once on a multi-FPGA system with 
associated data storage capabilities. This, however, is 
overly demanding on FPGA resource and is not a practical 
solution.  



The next best solution would be to implement the system 
seen in figure 1 below. In this set-up each individual 
function is instantiated dynamically on the FPGA as and 
when it is required, according to the algorithm running on 
the host. This would require functions to be pre-compiled 
for hardware and a versatile communications network to 
handle the changing functions on the FPGA. To be a 
worthwhile contender to a microprocessor-only 
implementation the following relationship needs to be 
satisfied: 
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Where ttotal is the total execution time for the entire 
algorithm, which consists of Nf VSIPL functions, in 
hardware, tboot is the time taken to load the next function in 
the algorithm onto the FPGA, tload is the time taken to 
provide the function with the necessary data, texec is the time 
taken to obtain a result and tunload is the time taken to send 
the output data to its destination. tproc is the processing time 
for the algorithm when implemented solely on a 
microprocessor. 

 
Figure 1: Ideal System Set-up 

 

Before being able to implement the system shown in figure 
1, which one could easily envisage as being VSIPL-
compliant, one must overcome a number of difficulties. 
These range from problems with refreshing DRAM, 
bottlenecks in loading functions onto the FPGA and the 
potential limitations on communications latency and 
bandwidth.  

The architecture shown in figure 2 below shows an initial 
set-up to demonstrate the performance of the VSIPL 
floating-point functions implemented in hardware. The 
entire algorithm is implemented in hardware with the host 
simply initializing the system, sending the input data and 
receiving the end result.  

In order to achieve an improvement over a microprocessor-
based implementation the following worst case relationship 
must be satisfied: 
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Figure 2: Initial System Set-up 

The more functions an algorithm utilizes, the more silicon 
real-estate is taken up. Eventually on large algorithms a 
single device will no longer suffice for implementation. We 
will also therefore be demonstrating the partitioning and 
system control on multi-FPGA systems of these high-
capacity algorithms. 
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