

A Software Methodology for Real Time Target Recognition
Wim Bohm

Colorado State University
and

Steve Heistand, David Caliga and Jeff Hammes
SRC Computers, Inc.

Abstract

This paper describes a software methodology for creating
high performance FPGA configurations for a significant
Automatic Target Recognition Application, Probing. The
goal of the particular application under study is to
recognize the SRC logo at varying distances and angles at
video frame rate, which cannot be achieved using a
microprocessor. Probes are pairs of points straddling an
edge of a target. Probesets define a silhouette. Using a Perl
script, probesets can first be viewed, scaled and rotated,
and later be translated into C. Using the MAP C compiler,
which is a component of the SRC Carte™ Programming
Environment, the resulting C program is translated into an
FPGA hardware configuration code. The code executing on
the FPGA hardware runs at video camera frame rate. This
is an impressive speedup compared to a C implementation
of the same algorithm executing on an Intel P4 Xeon®
microprocessor.

Introduction: SRC MAP and MAP C
In a SRC MAPstation™ the CPU is connected to a Compact
MAP processor, Figure 1, via a high-speed memory
interface. The MAP processor contains two FPGAs that are
accessible to the user, and a control FPGA that handles
DMAs between the six on-board memories and the CPU's
memory. Each memory can be accessed simultaneously by
the control FPGA and one of the two User FPGAs. The
whole system is programmed in C or Fortran. The user
controls the partitioning of a code between the CPU and the
MAP by putting a MAP-targeted routine in its own source
file and compiling it to hardware configurations with the
MAP C compiler.

Probing
An interesting test case for the MAP processor is an
Automatic Target Recognition (ATR) application. Probing
is an ATR technique suited to recognize rigid objects. A
simpler version of the algorithm presented here was used as
part of an ATR system developed to recognize particular
vehicles at various angles but at a fixed distance, developed
at Colorado State University [1,2]. In this case we want to
recognize varying sized logos at varying distances. Figure 2
shows the image with a logo (with the crosshairs) and two
decoys.

A probe is a pair of input image pixels and an associated
boolean result. Typically, a probe returns true when the

absolute value of the difference between pixel values
exceeds a threshold, answering the question: “Is one pixel
on one side of an edge of interest of an object and the other
on the other side?” A probeset is a set of probes arranged
along the significant edges of an object, defining its
silhouette as well as its internal structure. When the proper
probeset is placed over an object of interest, one expects a
high percentage of the probes to return true. If the probesets
are sufficiently detailed and the objects sufficiently distinct,
then no other object will score as high.

In our case we want to recognize the SRC logo at a range of
distances and angles in real time, i.e. at the frame rate of a
video camera. Figure 3 shows a logo and a fitting probeset
generated from the original by the Perl script. The irregular
alignment of the probes is caused by a number of factors,
including compensation for camera characteristics, and the
integer math performed on the probeset pairs.

Probesets can be viewed and transformed (scaled or rotated)
using a Perl script. The Perl script also compiles the
probesets into C code that performs the necessary point
accesses, subtractions and comparisons. By compiling the
generated C code with the MAP C compiler, the probesets
are hardwired into FPGA configurations.

Recognizing objects of varying sizes and angles
The “initial” probeset has 50 probes and fits a logo in a
40x40 pixel window of the 640x480 pixel gray scale input
image. The distance between the probe points is about six
pixels in the initial probeset. This allows objects of slightly
varying size to be recognized. In order to cope with objects
that vary much more in size two techniques are employed.
First to recognize smaller objects, three additional probesets
are created from the initial one, each fitting a window of
about 5/6 the size of the previous window. This results in
windows of 40x40, 33x33, 28x28, and 24x24, and allows
logos of all sizes from 24x24 to 40x40 to be recognized.
Secondly, to recognize larger logos the input image is
downsampled two, four, and eight times. The combination
of the two techniques provides a range of 24x24 to
320x320.

To recognize logos at various angles the four probesets are
rotated two times to the right and two times to the left. This
allows logos at angles from -30 degrees to +30 degrees to
be recognized. We now have twenty probesets, each with
50 probes. The goal is to perform the calculations for all
1,000 probes in parallel on the FPGAs.

Probing Performance and Analysis
A pseudo code version of the Probing algorithm is given
below.
for downsampling 1, 2, 4 and 8 {
 for each 40x40 pixel window in image {
 for all probe_sets {
 score = 0;
 for each probe in probe_set {
 if hit(probe) score++;
 }
 winning_score_in_window = maximum_score;
 }
 gather winning scores > threshold
 }
 suppress overlapping winning scores;
 return image with winning scores marked
 }

An exhaustive search through the probesets for all possible
sizes and angles in all possible placements in an image is a
costly computation. In a 680x480 image, 408,000 (640x480
+ 320x240 + 160x120 + 80x60) placements need to be
checked (actually, we overshoot by 40 pixels to detect
targets right on the edge) with 1,000 (20x50) probes at each
placement, totaling 408 million probes. Each probe requires
six operations, three memory accesses (two pixels, one
probe threshold), a subtract, a compare, and an add. This
comes to 2.45 Giga operations per image, just for the inner
loop of the program.

A C implementation of the algorithm on a 2.8 GHz Intel P4
Xeon microprocessor with 512 KB cache and 4 GB
memory runs slightly over 3 seconds, two orders of
magnitude slower than the required frame rate (30 frames
per second). Whereas the microprocessor executes the
algorithm sequentially, the MAP exploits several levels of
parallelism. The two inner loops (for all probesets ... for
each probe) are completely unrolled by the Perl script, so
that all 6,000 operations in these loops are executed in
parallel. A delay queue mechanism allows a new window to
be produced every clock cycle. Downsampling by factors
one and two are executed concurrently on the two User
FPGAs in the MAP, followed by downsampling factors
four and eight. Downsampling mode one accesses 307,200
40x40 pixels windows and downsampling mode four
accesses 19,200 windows. This comprises most of the
work. The gathering and suppressing of the winning scores
is done in a short sequential loop. Using almost all of the
logic space of both VP100 Virtex chips, clocked at 100
MHz, the MAP can operate at over 100 frames a second,
three times the required rate, 300 times faster than the
microprocessor.

Conclusion
We have introduced the MAP hardware and a two-stage
software methodology, creating C programs from probesets
using Perl and FPGA configurations from C codes using the
MAP C compiler. An automatic target recognition code
created according to this methodology runs at frame rate on
the MAP. This technology allows real-time (frame rate)
object recognition of rigid targets.

Six Banks
Dual-ported

On-Board Memory
(24 MB)

4800 MB/s

4800 MB/s

2400 MB/s
each

GPIO

4800 MB/s

Controller
11 Mgates

User Logic 1
30 Mgates

User Logic 2
30 Mgates

4800 MB/s

1400 MB/s
sustained
payload

each

MAP

Dual-ported
Memory
(4 MB)

Figure 1: Compact MAP Processor

Figure 2: (Noisy) SRC logo and decoys

Figure 3: Performance results

References

[1] J.R Beveridge et.al., A Coregistration Approach to Multisensor
Target Recognition, in Reconnaissance, Surveillance and
Target Acquisition for the Unmanned round Vehicle, pp
231-265, Morgan Kaufman, 1997.

[2] Compiling ATR Probing Codes for Execution on FPGA
Hardware, IEEE Symposium on Field-programmable Custom
Computing Machines, Napa Valley, CA, April 21-24, 2002.

