
VSIPL++: A Signal Processing Library Scaling with Moore’s Law

Jules Bergmann
CodeSourcery, LLC

jules@codesourcery.com
and

Jeffrey D. Oldham∗

oldham@cs.stanford.edu

2005 May 20

VSIPL++ [1, 2] is the object-oriented successor
to the Vector Signal and Image Processing Library
(VSIPL) [23]. Like VSIPL, VSIPL++ specifies an Appli-
cation Programming Interface (API) for use in the de-
velopment of high-performance numerical applications,
with a particular focus on embedded real-time systems
performing signal processing and image processing. Its
API is designed for performance, portability, and pro-
ductivity so software written using this API will benefit
from and be easily ported to the new and faster hardware
architectures that Moore’s Law continues to bring.

Moore’s Law, which predicts the number of transis-
tors available on an integrated circuit will double every
eighteen months, has held for the past forty years, and it
appears it will continue for at least the next decade [17].
During these years, microarchitectures have added many
features to exploit single-thread instruction-level paral-
lelism, such as pipelining, multiple out-of-order issue,
speculative execution, and branch prediction. For a com-
piler to be able to exploit these features, a program needs
to expose as much information as possible. VSIPL++
does this.

More recently, there has been a shift towards more
parallel architectures with multi-threading [7, 12], mul-
tiple cores [8, 13], and many small processors connected
with flexible interconnections [3, 16, 11, 20]. To exploit
these technologies, signal and image processing software
should use functional and data parallelism, moving data
to where it is needed without increasing software com-
plexity. VSIPL++ supports this.

The “PPP” Goals of VSIPL++

VSIPL++ is being developed by the High Performance
Embedded Computing Software Initiative (HPEC-SI) [9]
as an open-source, C++-based, middleware API with a
publicly available specification. Working together, re-
searchers, military contractors, and computer scientists
designed the library with three objectives, permitting it
to take full advantage of current and future hardware
architectures. In particular, the VSIPL++ specifica-
tion [1, 2] provides

∗VSIPL++ development work performed while this author was
an employee of CodeSourcery, LLC, but his opinions expressed
here are his own.

performance: reductions in program execution times
through more efficient use of current and future
hardware architectures,

portability: porting to new hardware requires very few,
if any, changes to existing programs, and

productivity: significant decreases in program length
when using VSIPL++.

These “PPP” goals support write-once, run-everywhere
VSIPL++ programs executing efficiently both on to-
day’s architectures as well as on future hardware archi-
tectures.

The VSIPL++ specification, version 1.0, [2] was re-
leased 2005 May so programmers can now benefit from
this API. The corresponding open-source reference im-
plementation [25] is also available both for use by pro-
grammers and as the basis of academic and commercial
VSIPL++ implementations.

Performance

VSIPL++’s performance improvements derive from a
combination of data parallelism and compiler and imple-
mentation optimizations such as loop-fusion technologies
and algorithmic specialization. Using object-oriented
syntax to simplify notation, VSIPL++ supports data-
parallel computation. Element-wise operations such as
vector, matrix, and tensor addition and subtraction and
reduction operations such as vector and matrix maxi-
mum, sum, and mean can be computed using one or
more processors or threads, depending on the underly-
ing hardware. The specification supports implementing
the same functionality using specialized hardware with
no changes to programs’ expressions. For example, the
same functionality can be implemented using SIMD in-
structions to have a single processor perform multiple
simultaneous operations, reducing these operations’ ex-
ecution times by up to a factor of four [21].

The specification requires VSIPL++ to make type in-
formation available during compilation so programs can
be optimized. For example, it supports using compile-
time expression-template technology to fuse loops so
multiple data-parallel operations are implemented using
a single loop, avoiding the need for storage of intermedi-
ate values [6, 19, 22, 24]. For example, the element-wise



assignment A = C + C * D / E can be computed using
one loop containing assignments to elements i: A[i] =
C[i] + C[i] * D[i] / E[i]. In many hardware ar-
chitectures, memory locality is important so the same
technology permits a VSIPL++ implementation to au-
tomatically reorder operations on matrixes and tensors
into blocks when compiling without any revision of user
programs.

The specification supports specialization of operations
using C++ template specializations. For example, a con-
volution implementation designed to support all numeric
types may be supplemented by a special faster implemen-
tation for doubles. At compile time, the most special-
ized (and most efficient) implementation will be used.
The VSIPL++ library implementer, a VSIPL++ user,
or even specialized hardware can provide the specializa-
tion. These are just a few examples of how the type
information made available by VSIPL++ during compi-
lation permits it to incorporate current and future imple-
mentation and compilation techniques without the need
to revise existing programs.

Portability

The VSIPL++ specification facilitates porting programs
to new hardware architectures with zero or very few
changes in user programs. The features supporting
portability include encapsulation of user data layout,
built-in support for distributed data and computation,
and type-independent expression syntax.

VSIPL++ separates storage and use of data. Blocks
contain data, whether stored or computed, and views
such as vectors, matrixes, and tensors operate on data.
Because of this separation, the VSIPL++ specifica-
tion supports uniprocessor, multi-processor, and multi-
threaded computation with no changes to programs ex-
cept for revising the declarations of the data blocks used
by views. For example, to port a serial program for
use with multiple processors or threads, the only nec-
essary changes are declarations how the data should be
distributed among the available processors or threads.
Block, cyclic, and block-cyclic distributions are sup-
ported [1, 10]. The VSIPL++ library is responsible for
using MPI [14, 15], DRI [4], or threading commands to
ensure data is moved to where it is needed for computa-
tion and storage. Making the library, not the program-
mer, responsible for data movement permits porting to
new hardware architectures with different communica-
tion mechanisms.

Encapsulation of user data in blocks permits support-
ing special-purpose hardware and architectures, both ex-
isting and future. For example, a user-defined VSIPL++
block can ensure data is stored according to SIMD mem-
ory alignment requirements. To use these blocks in

a program, the declarations of these data blocks must
be modified, but no expressions need to be modified.
The usual VSIPL++ functions can still access this data,
but faster, function template specializations using SIMD
commands can be added to the library by the user or a
VSIPL++ implementor. When compiling, the types of
blocks participating in expressions are determined and
the faster, specialized implementations are used. Be-
cause this detection occurs during compilation, there is
no run-time overhead for using specialized code. Similar
extensions to support other hardware architectures such
as PCAs [3], FPGAs, and data-parallel graphics proces-
sors [5, 18] are also possible. For each architecture, a new
block would be introduced and some functionality would
be specialized, either by the user or by a VSIPL++ li-
brary implementer. VSIPL++ programs need not be
changed except for the declarations of a few data blocks.
This easy migration path helps code take advantage of
the new hardware that Moore’s Law provides.

Productivity

VSIPL++ improves programmer productivity by pro-
viding high-level, algorithmic syntax; by permitting pro-
gram development and testing on desktop computers be-
fore porting to more complex hardware architectures;
and by isolating hardware-dependent code in the library.
VSIPL++ provides all the normal linear algebra and sig-
nal processing functionality, e.g., vectors, matrixes, ten-
sors, SVD solvers, FFTs, FIR filters, convolutions, and
windowing functions, as well as expression syntax sup-
porting normal mathematical and algorithmic notation,
e.g., x = 3 * sin(y) - fft(x). Having program syn-
tax similar to mathematical, algorithmic syntax simpli-
fies translating from algorithms to programs and eases
checking for correctness. The library guarantees its cor-
rectness so programmers can concentrate on correctly
using the tools it provides.

Unlike other middleware, porting from a uniprocessor
environment to a high-performance environment is triv-
ial, as we described above; only modifying block declara-
tions is required, and program correctness is maintained.
No additional knowledge or statements, such as multi-
processor communication, SIMD instructions, or thread-
ing primitives, need to be known by the VSIPL++ user
because the VSIPL++ implementation is responsible for
issuing commands to move data where it is needed for
computation. As new, faster hardware architectures are
created, the commands to use the architecture’s features
can be added to an existing VSIPL++ implementation
without affecting user code. This helps the software take
advantage of Moore’s Law.



References

[1] CodeSourcery, LLC. VSIPL++ specification —
parallel specification. http://www.hpec-si.org/
private/specification-parallel.pdf, Septem-
ber 2004.

[2] CodeSourcery, LLC. VSIPL++ specification 1.0 fi-
nal. http://www.hpec-si.org/spec-1.0-final.
pdf, May 2005.

[3] DARPA Information Processing Technology Of-
fice. Polymorphous computing architectures
(PCA). http://www.darpa.mil/ipto/programs/
pca/index.htm.

[4] Data Reorganization (DRI) Forum. Document
for the data reorganization interface (DRI-1.0)
standard. http://www.data-re.org/documents/
dri-report-09252002.pdf, September 2002.

[5] General-purpose computation using graphics hard-
ware. http://www.gpgpu.org/.

[6] Scott Haney, James Crotinger, Steve Karmesin, and
Stephen Smith. PETE: The portable expression
template engine. Dr. Dobb’s Journal, pages 88–95,
October 1999. http://www.ddj.com/documents/
s=898/ddj9910h/.

[7] H. Peter Hofstee. Industry chip hardware technol-
ogy. In Jeremy Kepner, editor, Eighth Annual High
Performance Embedded Computing (HPEC) Work-
shop, number HPEC-7, Lincoln, MA, September
2004. Massachusetts Institute of Technology Lincoln
Laboratory.

[8] H. Peter Hofstee. Power efficient proces-
sor architecture and the cell processor. In
International Symposium on High-Performance
Computer Architecture, volume 11, Los Alami-
tos, CA, February 2005. IEEE Computer Soci-
ety. http://www.hpcaconf.org/hpca11/papers/
25_hofstee-cellprocessor_final.pdf.

[9] High Performance Embedded Computing Software
Initiative. http://www.hpec-si.org.

[10] J. Lebak, J. Kepner, H. Hoffmann, and E. Rutledge.
Parallel VSIPL++: An open standard software li-
brary for high-performance parallel signal process-
ing. Proceedings of the IEEE, 93(2):313–330, Febru-
ary 2005. http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=1386654.

[11] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho,
William J. Dally, and Mark Horowitz. Smart

memories: A modular reconfigurable architec-
ture. In ISCA ’00: Proceedings of the 27th An-
nual International Symposium on Computer Ar-
chitecture, pages 161–171, New York, NY, USA,
2000. ACM Press. http://www.stanford.edu/
~jayasena/docs/sm_isca_00.pdf.

[12] Deborah T. Marr, Frank Binns, David L. Hill,
Glenn Hinton, David A. Koufaty, J. Alan Miller,
and Michael Upton. Hyper-threading technology ar-
chitecture and microarchitecture. Intel Technology
Journal, 6(1), February 2002. http://www.intel.
com/technology/itj/2002/volume06issue01/
art01_hyper/p01_abstract.htm.

[13] Jim McGregor. A day at the races. Microprocessor
Report, 09 May 2005.

[14] Message Passing Interface Forum. MPI: A
message-passing interface standard. http://www.
mpi-forum.org/docs/mpi-11.ps, June 1995.

[15] Message Passing Interface Forum. MPI-2: Exten-
sions to the message-passing interface. http://www.
mpi-forum.org/docs/mpi-20.ps, July 1997.

[16] MONARCH: A MOrphable Networked microAR-
CHitecture. http://www.isi.edu/asd/monarch/
index.html.

[17] Gordon E. Moore. No exponential is
forever . . . but we can delay “forever”.
ftp://download.intel.com/research/silicon/
Gordon_Moore_ISSCC_021003.pdf, 10 February
2003. Presentation at the 2003 IEEE Internation
Solid-State Circuits Conference.

[18] John Owens. GPUs: Engines for future high-
performance computing. In Jeremy Kepner, editor,
Eighth Annual High Performance Embedded Com-
puting (HPEC) Workshop, number HPEC-7, Lin-
coln, MA, September 2004. Massachusetts Institute
of Technology Lincoln Laboratory.

[19] PETE. http://acts.nersc.gov/pete/.

[20] Rodric M. Rabbah, Ian Bratt, Krste Asanovic, and
Anant Agarwal. Versatile tiled-processor architec-
tures: The raw approach. In Jeremy Kepner, editor,
Eighth Annual High Performance Embedded Com-
puting (HPEC) Workshop, number HPEC-7, Lin-
coln, MA, September 2004. Massachusetts Institute
of Technology Lincoln Laboratory.

[21] Edward Rutledge. AltiVec extensions to the
portable expression template engine (PETE). In



Sixth Annual High Performance Embedded Com-
puting (HPEC) Workshop, number HPEC-5, Lin-
coln, MA, September 2002. Massachusetts Institute
of Technology Lincoln Laboratory.

[22] Edward M. Rutledge. C++ expression templates in
an embedded, parallel, real-time, signal processing
library. In Fourth Annual High Performance Embed-
ded Computing (HPEC) Workshop, number HPEC-
3, Lincoln, MA, September 2000. Massachusetts In-
stitute of Technology Lincoln Laboratory.

[23] David A. Schwartz, Randall R. Judd, William J.
Harrod, and Dwight P. Manley. VSIPL 1.1
API. http://www.vsipl.org/VSIPL_1p1.pdf,
June 2002.

[24] T. Veldhuizen. Expression templates. C++
Report, 7(5):26–31, June 1995. http://osl.iu.
edu/~tveldhui/papers/Expression-Templates/
exprtmpl.html.

[25] Serial VSIPL++ reference implementation. http:
//www.hpec-si.org/private/software1.html,
March 2005.




