

Integrating VSIPL Support in the Dataflow Interchange Format
Chia-Jui Hsu and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742, USA

Abstract
We have developed the dataflow interchange format (DIF)
[2] and the associated DIF package for specifying and
working with dataflow models for DSP systems. Our recent
progress in the DIF project includes the DIF-based porting
approach [2] for porting DSP designs across dataflow-
based tools and the DIF-to-C software synthesis framework
[3] for automatically generating C implementations from
DSP system designs that are programmed in DIF. In this
extended abstract, we present a new approach of using
VSIPL [4] as an intermediate actor library for porting
across different DSP design tools. Applying VSIPL in this
manner builds on the increasing popularity of VSIPL as a
standard DSP library, and eliminates the need to have actor
mapping specifications between every pair of tools that we
wish to port across. We also present an important new
capability in DIF: DIF-to-VSIPL software synthesis. This
capability augments the support of the DIF software
synthesis framework and extends the reach of DIF-based
interchange to the wide variety of platforms that support
VSIPL.

The DIF Language and the DIF Package
The dataflow interchange format is a language for
specifying and working with mixed-grain dataflow models
for DSP systems. It provides a unique set of semantic
features for specifying graph topologies, hierarchies, and
dataflow-related as well as actor-specific information. The
DIF package is the associated Java-based software package.
It provides object-oriented dataflow representations,
algorithm implementations, and infrastructure for porting
and software synthesis. Figure 1 illustrates the methodology
of using DIF to interface various dataflow models, DSP
system designs, DSP libraries, dataflow-based DSP design
tools, and their supported embedded processing platforms.
The shaded areas in this figure show the new developments
that involve the integration of VSIPL support into DIF.

VSIPL Integration in the DIF-based Porting
The idea behind the DIF-based porting approach is that
except for actor information, a DIF specification for a DSP
application represents the same semantic information
regardless of which, if any, design tool is used to generate
it, and furthermore, porting DSP applications can be
achieved by properly mapping the tool-dependent actors,
while transferring the dataflow semantics unaltered. The
left shaded area in Figure 1 presents the porting mechanism
that consists of exporting (exporting a design from a tool to
DIF), actor mapping (converting attributes of the original
actors to attributes associated with corresponding target
actors), and importing (importing from DIF to another tool).
We have developed the actor interchange format (AIF) [2]

for specifying how to map actors across pairs of tools, and
we have demonstrated the automation and efficiency
provided by our DIF-based porting infrastructure.

One limitation of our original porting approach arises
however when working with a large number of tools: when
many tools are involved in the porting space, we need to
specify the mapping information for each pair of tools. This
requires effort and additional code that grows quadratically
with the number of tools that are involved.

The DIF Package

Dataflow Models

DIF Front-end

Dataflow-based
DSP Design
Tools

Autocoding
ToolsetPtolemy II Other

Tools

Embedded
Processing
Platforms

Java Other
Embedded
PlatformsJava VM

DIF SpecificationsDIF Language

Static
SDF

CSDFHSDF

DSP Designs
MDSDF

Image/Video

Signal Proc

Ada

VDM

Algorithms

DSP
Libraries

TI

VSIPL

DIF-to-C
DIF-to-VSIPL

C

DSPs

Other

AIF / Porting

DIF Spec

DIF Representations

Other Ex/Im

DIF Spec

SPGNMOML

DIF-Ptolemy Ex/Im

Meta-Modeling
BLDFPDF

Dynamic
DIF BDF

Comm Sys

DIF-AT Ex/Im

Figure 1: Methodology of using DIF.

VSIPL [4] is an open source, C-based API that provides
various commonly used functions in vector and matrix
computation, and many areas of signal processing.
Motivated by the increasing popularity of VSIPL as a
standard DSP library, we propose an enhanced DIF-based
porting approach where VSIPL is integrated as an
intermediate actor library, and the actor mapping
mechanism operates by mapping “to” and “from” VSIPL.

Tool 1 Tool 2

Tool 3

VSIPL

Tool 1 Tool 2

Tool 3......Tool N

AIF

AIF

AIF

AIF
AIF

AIF

AIFAIF

Tool N

AIF

Figure 2: Original porting approach and VSIPL integration.

With this new configuration, as illustrated in the right part
of Figure 2, we reduce the requirement of AIF
specifications from N(N-1)/2 to N, and we also greatly
facilitate the built-in AIF specifications for supported tools.
Note that DIF supports both the original and the enhanced
porting mechanisms. In particular, porting in a manner that
bypasses VSIPL may still make sense when a small number
of tools is involved or when direct mapping specifications
are available or particularly easy to develop.

When employing VSIPL for porting purposes, its function
prototypes are used as intermediate actor attributes. Issues
arise due to certain special properties of VSIPL that have
not been addressed in the developments of [2]. First, data
types become explicit because VSIPL encodes data types
(real/complex, dimension, and precision) into its naming
conventions, and VSIPL functions are data-type-specific.
This property does not generally hold for some tools, such
as Ptolemy II [1], where actors support multiple data types.
Therefore, we update the actor-block grammars in DIF and
AIF and design special actor mapping strategies to include
data type semantics. Second, VSIPL views encapsulate data
dimension and size inside, whereas other tools, such as the
Autocoding Toolset [6], may require specifying these
parameters when using actors. As a result, we enhance the
AIF semantics and actor mapping mechanism in order to
access production and consumption rates for this purpose.
Third, for certain computationally-intensive functions,
VSIPL extracts parameters into separate objects, e.g., FFT
and FIR objects. In DIF, such parameters are still specified
as actor attributes associated with the VSIPL functions.

DIF-to-VSIPL Software Synthesis
We have developed the DIF-to-C software synthesis
framework [3] to automate software implementation such
that designers only need to program the dataflow semantics
of DSP applications in DIF and associate actors with
desired C library functions. This capability provides a
vendor-neutral mechanism for linking coarse-grain
dataflow optimizations with fine-grain hand-optimized DSP
libraries and with DSP C compiler technology.

The DIF-to-C synthesis processes have been designed
based on synchronous dataflow (SDF) semantics since SDF
is the most mature model for dataflow-based DSP design.
However, we observe that stream-based SDF semantics and
array-based functions are sometimes inefficient when
modeling multi-dimensional signal processing systems.
Multi-dimensional synchronous dataflow (MDSDF) [5],
where dataflow constraints are determined by m-
dimensional production and consumption rates, has been
developed previously to better accommodate multi-
dimensional representation within the dataflow framework.
One of the problems in developing MDSDF-based software
synthesis is that efficient mechanisms are required to
rearrange data between MDSDF semantics and one-
dimensional memory layouts.

VSIPL adds a layer of abstraction involving the concepts of
blocks and views to support portability across diverse
memory and processor architectures. VSIPL blocks
represent contiguous memory spaces where data is stored.
VSIPL functions operate on views in a way that sets or
subsets of data can be virtually arranged as vectors (1-D),
matrices (2-D), or tensors (3-D). This feature makes VSIPL
a particularly good match for integration with SDF and
MDSDF semantics in software synthesis from DIF.

We have recently implemented multi-dimensional dataflow
representations and scheduling techniques in the DIF
package. We have also developed DIF-to-VSIPL software

synthesis capability that supports both SDF and MDSDF by
extending the original framework. Figure 3 illustrates the
design flow of DIF-to-C/VSIPL software synthesis.

Given the buffer space (1- or m-D) for a dataflow edge
computed by scheduling and buffering techniques, the DIF-
to-VSIPL translation process creates a VSIPL block with
size equal to the product of all dimensions. It also creates
two VSIPL views (vector, matrix, or tensor views based on
dimensions) associated with the block for source and sink
actors (VSIPL functions). The length attributes of the views
are decided by the production and consumption rates (1- or
m-D), the stride attributes are determined by the buffer
space (1- or m-D), and the offset attributes are adjusted
between VSIPL functions based on the looped schedule (1-
or m-D) and the token transfer rates.

DSP Application

SDF / MDSDF Modeling

DIF Specification

The DIF PackageDIF Front-end

DIF Representations

C / VSIPL Code

DSP & Embedded Processors

Programming

Compiling

Code Generation

Compiler & Library Link

Scheduling
Algorithms

Buffering
Techniques

DIF-to-C / VSIPL

Libraries

TI

VSIPL

Other

Figure 3: DIF-to-C/VSIPL software synthesis.

Acknowledgements
This research was supported in part by the U. S. Defense
Advanced Research Projects Agency (DARPA) via the U.
S. Army Aviation and Missile Command (Contract Number
DAAH01-03-C-R236).

References
[1] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S.

Neuendorffer, S. Sachs, and Y. Xiong, “Taming
heterogeneity - the Ptolemy approach,” Proceedings of the
IEEE, vol. 91, no. 1, January 2003.

[2] C. Hsu and S. S. Bhattacharyya, “Porting DSP applications
across design tools using the dataflow interchange format,” In
Proceedings of the International Workshop on Rapid System
Prototyping, Montreal, Canada, June 2005.

[3] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software synthesis
from the dataflow interchange format,” In Proceedings of the
International Workshop on Software and Compilers for
Embedded Systems, Dallas, Texas, September 2005.

[4] R. Janka, R. Judd, J. Lebak, M. Richards, and D. Campbell,
“VSIPL: An object-based open standard API for vector,
signal, and image processing,” In Proc. 2001 IEEE Int. Conf.
Acoustics, Speech, and Signal Processing, vol.2, pp.949–952.

[5] P. K. Murthy and E. A. Lee, “Multidimensional synchronous
dataflow,” IEEE Transactions on Signal Processing, vol. 50,
no. 8, pp. 2064-2079, August 2002.

[6] C. B. Robbins, “Autocoding toolset software tools for
automatic generation of parallel application software,”
technical report, Management Communications and Control,
Inc., 2002.

