
OMG Data-Distribution Service (DDS): Architectural Update
Joseph M. Schlesselman, RTI Santa Clara, joe@rti.com

Gerardo Pardo-Castellote, RTI Santa Clara, pardo@rti.com
Bert Farabaugh, RTI Boston, bertf@rti.com

Abstract Summary
This paper is a continuation of last year’s well-received
presentation on DDS. The DDS standard itself is becoming
well-established, and this presentation will highlight the
recent integration of additional technologies, specifically
high-performance in-memory database and web services,
with DDS implementations.

The OMG Data-Distribution Service (DDS) is a
middleware specification for publish-subscribe data-
distribution systems. The purpose of the specification is to
provide a common application-level interface that clearly
defines the data-distribution service. The specification
describes the service using UML, providing a platform-
independent model that can then be mapped into a variety
of concrete platforms and programming languages [1].

This presentation will briefly outline the OMG DDS
specification, describe the main aspects of the model,
compare it with related technologies, and gives examples of
the communication scenarios it supports.

This presentation will also note the important differences
between data-centric publish-subscribe and object-centric
client-server (e.g. CORBA) communications, along with
the applicability of each for real-time systems.

The OMG DDS attempts to unify the common practice of
several existing implementations enumerating and
providing formal definitions for the Quality of Service
(QoS) settings that can be used to configure the service.

Publish-subscribe networking is a key component of many
real-time distributed systems. The DDS specification is a
net-centric enterprise service (NCES) mandated for use by
the U.S. Department of Defense (DoD). Numerous
programs such as the U.S. Navy Open Systems Architecture
(Navy OA) initiative and U.S. Army Future Combat
Systems (FCS) program has embraced DDS. This talk will
also highlight existing publish-subscribe implementations
in Navy systems such as LPD 17, SSDS, and forthcoming
implementations such as LCS and DD(X) [2].

Background
The goal of the DDS specification is to facilitate the
efficient distribution of data in a distributed system.
Participants using DDS can “read” and “write” data
efficiently and naturally with a typed interface.
Underneath, the DDS middleware will distribute the data so
that each reading participant can access the “most-current”
values. In effect, the service creates a global “data space”
that any participant can read and write. It also creates a
name space to allow participants to find and share objects.

DDS targets real-time systems; the API and QoS are chosen
to balance predictable behavior and implementation
efficiency/performance. We will note some of these
tradeoffs in this paper.

Data-Centric versus Object-Centric
Central to understanding the need for this new standard is
an examination of the fundamental architectural differences
between a “data-centric” and “object-centric” view of
information communicated in a distributed real-time
system.

DDS provides a natural counterpoint to the existing well-
known CORBA model in which method invocations on
remote objects are accessed through an interface defined in
the Interface Descriptor Language (IDL). With CORBA,
data is communicated indirectly through arguments in the
method invocations or through their return values.

However, in many real-time applications the
communications pattern is often modeled as pure data-
centric exchange where applications publish supply or
stream) “data” which is then available to the remote
applications that are interested in it. Of primary concern is
the efficient distribution of data with minimal overhead and
the need to scale to hundreds or thousands of subscribers in
a robust, fault-tolerant manner. These types of applications
can be found in C4I systems, distributed control and
simulation, telecom equipment control, and network
management.

Figure 1 presents a simplified diagram of the entities within
a DDS domain. These entities will be described in detail in
the presentation.

Figure 1: DDS Entities

DDS Quality of Service Policy Set
The primary discriminator between DDS and other
approaches is the unique Quality of Service (QoS) policy
set. This set encompasses 21 key parameters that enable a
dynamic, tunable, and scalable real-time network.
However, this large set of also introduces the possibility of

confusion over which settings will enable optimal
performance within a given configuration. While specific
implementations of DDS often come with default settings
(or in some cases may not fully support all DDS QoS), this
is an area of active research.

Comparison to Distributed Shared Memory
Additional requirements of many real-time applications
include the need to control QoS properties that affect the
predictability, overhead, and resources used. Distributed
shared memory is a classic model that provides data-centric
exchanges. However, this model is particularly difficult and
“unnatural” to implement efficiently over the Internet.

Therefore, another model, the Data-Centric Publish-
Subscribe (DCPS) model, has become popular in many
real-time applications. While there are several commercial
and in-house developments providing this type of facility,
to date, there have been no general-purpose data-
distribution standards. As a result, no common models
directly support a data-centric system for information
exchange.

The OMG Data-Distribution Service (DDS) is an attempt to
solve this situation. The specification also defines the
operations and QoS attributes each of these objects supports
and the interfaces an application can use to be notified of
changes to the data or wait for specific changes to occur.

Comparison to OMG Notification Service
This paper will examine the fact that, while it is
theoretically possible for an application developer to use the
OMG Notification Service to propagate the changes to data
structures to provide the functionality of the DDS, doing
this would be significantly complex because the
Notification Service does not have a concept of data objects
or data-object instances nor does it have a concept of state
coherence.

Comparison to High-Level Architecture
(HLA) Run-Time Infrastructure (RTI)
HLA, also known as the OMG Distributed Simulation
Facility, is a standard from both IEEE and OMG. It
describes a data-centric publish-subscribe facility and a data
model. The OMG specification is an IDL-only specification
and can be mapped on top of multiple transports. The
specification address some of the requirements of data-
centric publish subscribe: the application uses a publish-
subscribe interface to interact with the middleware, and it
includes a data model and supports content-based
subscriptions.
However, the HLA data model supports a specialization
hierarchy, but not an aggregation hierarchy. The set of
types defined cannot evolve over time. Moreover, the data
elements themselves are un-typed and un-marshaled (they
are plain sequences of octets). HLA also offers no generic
QoS facilities.

Applications
This paper will describe the successful implementation of
data-centric publish-subscribe communications in
distributed modeling and simulation (M&S) as well as
deployed Navy systems (pending release permissions). The
presentation can include examples (depending on audience
interest and familiarity) such as:

Land: U.S. Army Future Combat Systems

Air: F-35 JSF EW Subsystem

Sea: Raytheon/Lockheed Martin LPD-17 Program

Space: NASA Robonaut Program

Summary
As shown in Figure 2, DDS provides an infrastructure layer
that enables many different types of applications to
communicate with each other.

Figure 2: The DDS Infrastructure

DDS creates a very simple architecture for data
communication, while enabling very complex data patterns.
Topics allow endpoint nodes to be abstracted from each
other, so nodes can enter and leave the distributed
application dynamically. DDS is “data-centric”—all the
QoS parameters can be changed on a per message basis.
This per message configurability is the key to supporting
complex data communication patterns

References
 [1] “Data Distribution Service for Real-time Systems, v1.0,”

Object Management Group specification document, dated
2004-12-02, available for free from http://www.omg.org.

[2] Gerardo Pardo-Castellote, “DDS Spec Outfits Publish-
Subscribe Technology for the GIG,” COTS Journal, April
2005.

