
Panel Session:
Will software save Moore’s Law?

A software engineer’s perspective

21 Sep 2005

W. Bail
The MITRE Corporation &

PEO IWS

The views expressed in this briefing are solely those of the author, and do not
represent those of the organizations with which the author is associated.

HPEC 2005

HPEC 2005

2

Moore’s Law???
Moore, Gordon E. “Cramming more components onto
integrated circuits”. Electronics, Vol 38, No. 8, April 19, 1965.

“Integrated circuits will lead to such wonders as home computers. or at
least terminals connected to a central computer automatic controls for
automobiles, and personal portable communications equipment. The
electronic wristwatch needs only a display to be feasible today.”

“The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year (see graph on next page). Certainly over
the short term this rate can be expected to continue, if not to increase.
Over the longer term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly constant for at least
10 years. That means by 1975, the number of components per integrated
circuit for minimum cost will be 65,000.

HPEC 2005

3

Some data –
Moore’s Law Transistor Count Chart

Copyright © 2005 Intel Corporation

HPEC 2005

4

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

100,000,000,000

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

Year

N
um

be
r o

f T
ra

ns
is

to
rs

Did it happen that way?

Doubles
every year

Doubles every
two years

Doubles every
1.836 years

Doubles every
18 months

Intel processor history

HPEC 2005

5

Overall question
Back to the question - Will software save Moore’s
Law?

We can’t even save ourselves…what do you want
from us?
Our track record of developing large, complex,
software-intensive systems has not been exemplary
And the expectations for what SW does keep
increasing
We have enough problems getting our own act
together

HPEC 2005

6

Current focus of software
Speed up SW development – greater productivity
Reduce the cost of developing complex SW systems
Make better software

Avoid introduction of defects into products
Facilitate finding and removing defects from products

Many needed SW features slow the system down
Fault tolerance
Modular designs
Reusable components
Portable software
COTS OSs and middleware
(Very) high-level languages

HPEC 2005

7

Hardware support
We have relied on hardware to help us deal with
increased SW complexity

Breathing room
We often discover that our systems do not fit into
the box

Particularly after we add features the customer wants
So we try to optimize the software in various ways
But we still relied on Moore’s Law to keep us going
Our systems have grown in size disproportionately
to HW growth

ref: Bob Bond

HPEC 2005

8

Strategies to make SW faster
Optimize source code

e.g., restructure based on knowledge of run-time
models
e.g., replace with assembler code

Optimize algorithms
Semantics-preserving transformations
Reduction of functionality (less precise,…)

Transform software from sequential to parallel
At coarse and fine-grained levels

Optimize translation – source code ⇒ executable
Optimizing compilers
Parallelizing compilers

HPEC 2005

9

Limits
But there is a limit to what can be done by SW on
existing processing resources
For any given processor architecture/system, will
approach limit asymptotically
But we can

Wait for faster processors
Switch to ASICs and FPGAs

HPEC 2005

10

What can we do?
The goal is to process more information in less time
With processors following Moore’s Law, SW could
add complexity and stay even or get ahead

Using fairly straightforward techniques
But if/when the slope trails off, SW needs to take a
more proactive approach

Be ready to exploit radical new architectures
Be flexible enough to break out of von Neumann-style
computation
Do not wait for HW to do all (most of) the work

HPEC 2005

11

What is needed?
Exploitation of model-driven techniques

That provide for rapid retargeting to alternate
computing architectures

Next generation of compiler techniques
Able to accommodate radical new processing
strategies, flexibly and quickly

New language designs that
enhance domain-specific programming
reflect common algorithm clichés
provide features to programmers for advanced
optimizations (e.g., parallelization)

If SW technologies cooperate with HW technologies,
total computing can continue to increase

