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Q1: Can software overcome Wirth’s Law in 
time to save Moore’s Law?

SIMD
SMT’s

Multi-core
SMP

Parallelism in all the above cases can only be exploited through software: 
operating system, optimizing compilers, virtual machines, libraries, middleware,
algorithms, applications, …

Answer: Yes!  The only way to save Moore’s Law is through parallelism,
and the only way to exploit parallelism (beyond ILP) is through software. 
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Q2: What benefits can we expect from the new high-
productivity languages under development?

1) Safety -- eliminate entire classes of errors through static & dynamic safety checks
• Type errors, initialization errors, pointer errors, array indexing errors – no accesses to 

inconsistent data
• Branching errors – no branches to unpredictable code locations
• Higher-level semantic errors – deadlock, data races, writes to immutable data, violations 

of preconditions/postconditions
2) High level concurrency – integration of threads with a partitioned global address 

space and scalable synchronization operations
• Unified model for fine-grain multithreading, one-sided data transfers, remote atomic 

operations, active messages, …
• Relaxed memory model for synchronization operations
3) Optimized implementations on high-end HPC systems 
• Early implementations of PGAS languages (UPC, CAF) point the way
4) Ecosystem: Integration with Environment, Libraries, and Tools
• Use of tools integrated into open & extensible development environments, such as Eclipse
• First-class support for components and libraries
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Q3: Is it possible to use portable software 
with the latest hardware technologies?

(Graphics processors, Cell, PCA, FPGAs, etc.)

Commodity
Virtual 

Machines

Real-time VM
Enhancements ---
IBM Metronome

project

HPC VM
Enhancements ---
IBM PERCS/X10 

project

Eclipse as a 
foundation for 
common tools

Answer: Yes! 
Virtual machines 
and integrated
tools are the 
key to portability
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Garbage Collection Pause Times
(Customer application)

Worst-case 1.7 ms
Average 260 us

IBM Metronome project: 
Portable Real-time Garbage Collection

David Bacon, Perry Cheng, David Grove, V.T. Rajan, Martin Vechev
• Garbage collection is fundamental to Java’s value proposition

− Safety, reliability, programmer productivity 
− But also causes the most non-determinism (100 ms – 10 s latencies)
− RTSJ standard does not support use of garbage collection for real-time

• Metronome is our hard real-time garbage collector
− Worst-case 2 ms latencies; high throughput and utilization
− 100x better than competitors’ best garbage collection technology

Application Collector

Time

S
pa
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a = allocation rate

c = collection rate

Resulting Schedule

Base Application Memory
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PERCS Programming Model, Tools and Compilers
(PERCS = Productive Easy-to-use Reliable Computer Systems)
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JavaTM source code

(w/ threads & conc utils) . . .. . .
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