
Panel Session:
Will Software Save Moore’s Law?

Panel Session:
Will Software Save Moore’s Law?

Vivek Sarkar
(vsarkar@us.ibm.com)

Senior Manager, Programming Technologies
IBM T.J. Watson Research Center

This work has been supported in part by the
Defense Advanced Research Projects Agency (DARPA)

under contract No. NBCH30390004.

Vivek Sarkar
(vsarkar@us.ibm.com)

Senior Manager, Programming Technologies
IBM T.J. Watson Research Center

This work has been supported in part by the
Defense Advanced Research Projects Agency (DARPA)

under contract No. NBCH30390004.

2 HPEC 2005 Panel Session, Sep 2005 V.Sarkar

System-level Performance of
Embedded Applications

Application + Algorithms

Integrated
Development &

Performance
Tuning Tools

Middleware + Libraries

Optimizing
Compilers

Virtual
Machines

Semiconductors
Device, process, interconnect

Package
I/Os, wiring level cooling, …

Microprocessor
Core

Microacrchitecture, logic
circuits, design methodology

Cache
Cache levels,

granularity, latency,
throughput

Coprocessors
&

Accelerators

I/O

Operating System + Hypervisor

System Structure
Fabric, switches, busses, memory system, protocols, …

Hardware
contribution
reducing
to 2x every
3-5 years

Goal: maintain 2x CAGR
improvement every 1.5
years in system
performance per unit
power/area/cost/. . .

Challenge:
Software
contribution
must exceed
2x every
1.5 years!

3 HPEC 2005 Panel Session, Sep 2005 V.Sarkar

Q1: Can software overcome Wirth’s Law in
time to save Moore’s Law?

SIMD
SMT’s

Multi-core
SMP

Parallelism in all the above cases can only be exploited through software:
operating system, optimizing compilers, virtual machines, libraries, middleware,
algorithms, applications, …

Answer: Yes! The only way to save Moore’s Law is through parallelism,
and the only way to exploit parallelism (beyond ILP) is through software.

. . .

Memory

PEs,
Node

PEs,

.

Memory

PEs,
Node

PEs,

Scale-up
Parallelism

Scale-out
Parallelism

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

Heterogeneous Parallelism
(Co-processors, accelerators)

4 HPEC 2005 Panel Session, Sep 2005 V.Sarkar

Q2: What benefits can we expect from the new high-
productivity languages under development?

1) Safety -- eliminate entire classes of errors through static & dynamic safety checks
• Type errors, initialization errors, pointer errors, array indexing errors – no accesses to

inconsistent data
• Branching errors – no branches to unpredictable code locations
• Higher-level semantic errors – deadlock, data races, writes to immutable data, violations

of preconditions/postconditions
2) High level concurrency – integration of threads with a partitioned global address

space and scalable synchronization operations
• Unified model for fine-grain multithreading, one-sided data transfers, remote atomic

operations, active messages, …
• Relaxed memory model for synchronization operations
3) Optimized implementations on high-end HPC systems
• Early implementations of PGAS languages (UPC, CAF) point the way
4) Ecosystem: Integration with Environment, Libraries, and Tools
• Use of tools integrated into open & extensible development environments, such as Eclipse
• First-class support for components and libraries

5 HPEC 2005 Panel Session, Sep 2005 V.Sarkar

Q3: Is it possible to use portable software
with the latest hardware technologies?

(Graphics processors, Cell, PCA, FPGAs, etc.)

Commodity
Virtual

Machines

Real-time VM
Enhancements ---
IBM Metronome

project

HPC VM
Enhancements ---
IBM PERCS/X10

project

Eclipse as a
foundation for
common tools

Answer: Yes!
Virtual machines
and integrated
tools are the
key to portability

6 HPEC 2005 Panel Session, Sep 2005 V.Sarkar

Garbage Collection Pause Times
(Customer application)

Worst-case 1.7 ms
Average 260 us

IBM Metronome project:
Portable Real-time Garbage Collection

David Bacon, Perry Cheng, David Grove, V.T. Rajan, Martin Vechev
• Garbage collection is fundamental to Java’s value proposition

− Safety, reliability, programmer productivity
− But also causes the most non-determinism (100 ms – 10 s latencies)
− RTSJ standard does not support use of garbage collection for real-time

• Metronome is our hard real-time garbage collector
− Worst-case 2 ms latencies; high throughput and utilization
− 100x better than competitors’ best garbage collection technology

Application Collector

Time

S
pa

ce

a = allocation rate

c = collection rate

Resulting Schedule

Base Application Memory

7 HPEC 2005 Panel Session, Sep 2005 V.Sarkar

PERCS Programming Model, Tools and Compilers
(PERCS = Productive Easy-to-use Reliable Computer Systems)

X10 source code
Fortran source code

(w/ MPI, OpenMP)
C/C++ source code

(w/ MPI, OpenMP, UPC)
JavaTM source code

(w/ threads & conc utils)

Text in blue
identifies

exploratory
PERCS

contributions

Productivity
Measurements

X10
Development

Toolkit

Java
Development

Toolkit

C/C++
Development

Toolkit
+ MPI extensions

Fortran
Development

Toolkit
. . .

Performance
Exploration

X10
Compiler

Java
Compiler

C/C++ Compiler
w/ UPC

extensions

Fortran
Compiler

. . .

Parallel Tools
Platform (PTP)

Eclipse
platform

Refactoring for
Concurrency

heap

stack

control

. . .

Activities &
Activity-local storage

Place-local heap

Partitioned Global heap

heap

stack

control

. . .

Place-local heap

Partitioned Global heap
Outbound
activities

Inbound
activities

Outbound
activity
replies

Inbound
activity
replies

Activities &
Activity-local storage

Immutable Data

X10 Threaded
Partitioned
Global Address
Space model
(T-PGAS)

