X10 Programming: Towards High Productivity High Performance Systems in the post-Moore's Law Era

Vivek Sarkar (vsarkar@us.ibm.com) Senior Manager, Programming Technologies IBM T.J. Watson Research Center

This work has been supported in part by the Defense Advanced Research Projects Agency (DARPA) under contract No. NBCH30390004.

Acknowledgments

- X10 Core Team
 - Philippe Charles
 - Chris Donawa
 - Kemal Ebcioglu
 - Christian Grothoff
 - Allan Kielstra
 - Christoph von Praun
 - Vijay Saraswat
 - Vivek Sarkar
- X10 Tools
 - Julian Dolby
 - Robert Fuhrer
 - Frank Tip

- Mandana Vaziri

Publications

- "X10: An Object-Oriented Approach to Non-Uniform Cluster Computing", P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun, V. Saraswat, V. Sarkar. OOPSLA conference, October 2005 (to appear).
- "Concurrent Clustered Programming", V. Saraswat, R. Jagadeesan. CONCUR conference, August 2005.
- "X10: an Experimental Language for High Productivity Programming of Scalable Systems", K. Ebcioglu, V. Sarkar, V. Saraswat. P-PHEC workshop, February 2005.
- X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Outline

- 1. X10 Execution Model
 - Integration of multiple levels of concurrency and asynchronous data transfer
- 2. X10 Language and Environment
 - Extended subset of the Java[™] language
 - X10 environment is integrated into Eclipse ecosystem
 - Synergies between HPC VM technologies (X10) and realtime VM technologies (Metronome)

Future System Trends

Implications to software:

- 1) Exploit intra-process parallelism with non-uniform data affinities
- 2) Exploit inter-process parallelism in tightly coupled clusters of distributed nodes

Overview of X10 Execution Model

- Asynchronous activities
 - Unification of task parallelism and asynchronous data transfers
 - Ultra-lightweight "async" threads, augmented with (optional) loop-level constructs ("foreach", "ateach")
- Coordination of parallel control flow
 - "finish" and "clock" constructs
- Coordination of data accesses
 - "atomic" blocks, "future" and "force" constructs
- Places
 - Extension of Partitioned Global Address Space (PGAS) to Threaded Partitioned Global Address Space (T-PGAS)
 - Place = collection of non-migrating activities and mutable data
 - An activity can create a new activity at a local or remote place

Locality Rule in X10 Execution Model

- Any access to a shared mutable datum must be performed by an activity at the same place as the datum
 - Immutable data can be freely access from any place
- A BadPlaceException is thrown when the Locality Rule is violated

X10 Execution Model: Examples

```
1) finish {
    async (A[R]) A[R] = 99; // Initiate remote put
    // Do other work in parallel
  }
```

2) // Combine remote get and remote put, A[L] = A[R] async (A[R]) { final int v = A[R]; async (A[L]) A[L] = v; }

- 3) async (T[j]) atomic T[j][^]=k; // Asynchronous atomic block
- 4) ateach (point[j] : A.distribution)
 A[j] = f(j); // Equivalent to async(A[j]) A[j] = f(j)

X10 Execution Model: Examples

X10 Dynamic Activity Invocation Tree

X10 Dynamic Activity Invocation Tree

Summary of X10 Execution model

Advantages:

- Any program written with atomic, async, finish, foreach, ateach, and clock parallel constructs *will never deadlock*
- Inter-node and intra-node parallelism integrated in a single model
- Remote activity invocation subsumes one-sided data transfer, remote atomic operations, active messages, . . .
- Finish subsumes point-to-point and team synchronization
- All remote data accesses are performed as activities → rules for ordering of remote accesses follows simply from concurrency model

Applications:

- Can be easily mapped to multiple levels of parallel hardware (SIMD, SMT, coprocessors, cache prefetch, SMP, clusters, ...)
- Can be used as target for multiple high level languages
 - X10 language serves as an exemplar

Outline

- 1. X10 Execution Model
 - Integration of multiple levels of concurrency and asynchronous data transfer
- 2. X10 Language and Environment
 - Extended subset of the Java[™] language
 - X10 environment is integrated into Eclipse ecosystem
 - Synergies between HPC VM technologies (X10) and realtime VM technologies (Metronome)

PERCS Programming Model, Tools and Compilers (PERCS = Productive Easy-to-use Reliable Computer Systems)

PERCS Programming Model: Position of X10 Language in Software Stack

Integrated Parallel Runtime: MPI + LAPI + RDMA + OpenMP + threads

X10 vs. Java[™] languages

- X10 is an extended subset of the Java language
 - Base language = Java 1.4 language
 - Java 5 features (generics, metadata, etc.) will be supported in the future
 - Notable features removed from Java language
 - Concurrency --- threads, synchronized, etc.
 - Java arrays replaced by X10 arrays
 - Notable features added to Java language
 - Concurrency async, finish, atomic, future, force, foreach, ateach, clocks
 - Distribution --- points, distributions
 - X10 arrays --- multidimensional distributed arrays, array reductions, array initializers,
 - Serial constructs --- nullable, const, extern, value types
- X10 supports both OO and non-OO programming paradigms

Sequence Comparison Example: Local Alignment

 Goal: find the best matching subregions in a pair of sequences (e.g., DNA, RNA, sequence) so as to narrow down set of candidates for identifying biological relationships

16

X10 Version of Sequence Alignment (Serial Version)

```
// Main program
const int N = c1.length, M = c2.length;
. . .
A = new int[[0:N,0:M]];
computeMatrix(A, c1, c2, 1, M);
. . .
```


X10 Version of Sequence Alignment (Distributed Parallel Version)

```
// Allocate A with a [*,block] distribution
int[.] A = new int[dist.blockColumns([0:N,0:M])];
final int overlap = ceilFrac(N*(-Match),Gap) + N;
// SPMD computation at each place
finish ateach(point [i] : dist.unique()) {
  final dist myD = A.distribution | here; // sub-distribution for this place
  final int myLow = myD.region.rank(1).low();
  final int myHigh = myD.region.rank(1).high();
  final int overlapStart = max(0,myLow-overlap);
  final dist warmupD = [0:N, overlapStart:myLow] ->here;
  final int [.] W = new int[warmupD]; // W = local warmup array
  computeMatrix(W, c1, c2, overlapStart+1, myLow);
  foreach (point[i]:[0:N]) A[i,myLow] = W[i,myLow]; // Copy col myLow
  // Compute my section of global array A
  computeMatrix(A, c1, c2, myLow+1, myHigh);
}
```


X10 Status

Reference implementation

- Used in PSC productivity study and university pilots
- Nightly regression tests (~ 240 unit tests)
- X10 application set starting to grow beyond unit tests
- Plan for open source release at end of Phase 2

Performance Prototype

- Initial design for mapping X10 to LAPI using product J9 VM
- Implementation has just begun
 - Bring-up of "hello world" X10 application on multiple nodes

• X10 Development Toolkit (X10DT)

- Eclipse tools with basic language support (syntax highlighting, etc.)
- Work started on X10-specific *refactorings*
 - Extract Async
 - Introduce atomic sections
- Static Analysis and Ahead-Of-Time Optimization (just starting)
 - Optimization of BadPlaceException checks
 - Use of static analysis to enhance Extract Async refactoring

X10 Reference Implementation

X10 Reference Implementation: Screen Shot

		□ □ Resour
🖬 Navigator × 🔅 🗇 🖓 🗐 😫 🔻 🖓 🗖	🖸 Activit 🗈 polyglo 🗅 ArrayIn 🗅 RandomA 🎝 LocalPl	🛽 Edmisto 🛛 🔭 🗖 🗖
e 🔓 >demo 🔥	93	~
⊕ Gran Sor	94 // SPMD computation at each place 55 finish ateach (point [pl:dist factory unique(D places()))	
	96 // get sub-distribution for this place	1
	97 final dist myD = D here;	
	98 final int myLow=myD.region.rank(1).low();	
	<pre>99 final int myHigh=myD.region.rank(1).high(); 100 final int overlapStart=Math max(0 myLow-overlap);</pre>	
EditDistMatrix\$3.class (Binary)	101 final dist warmupD=[0:N, overlapStart:myLow]->here;	
EditDistMatrix\$4.class (Binary)	102	
	103 // Create a local warmup array	
>EditDistMatrix\$6 class (Binary)	104 final int [.] W= new int[warmupD]; 105 // Compute columns overlapStart+1 myLow using colu	umn overlanStart
>EditDistMatrix\$7 class (Binary)	<pre>106 compute Matrix (W, c1, c2, overlapStart+1, myLow);</pre>	and overrappeare
>Edmiston class (Binary)	<pre>107 // Copy column, e[0:N,myLow] = W[0:N,myLow];</pre>	
Edmistonicuss (Bindry) Edmistonicuss (ASCII - kky)	108 for (point [i] : [0:N]) e[i,myLow] = W[i,myLow];	
B SEdmiston v10, 1,1, (Binany)	109 ComputeMatrix(e, ci, cz, myLow+i, myHigh);	~
A >Edmiston(Main class (Binany))		>
D >GameOflife class (Binary)	Console Search CVS Resource History	🗏 🧏 🖉 📑 🖻 👻 🗂 🗖 🗖
ScameOfLife java (ASCII -kkv)	<terminated> x10 [Java Application] C:\Program Files\IBM\Java142\bin\j</terminated>	javaw.exe (Sep 14, 2005 3:14:
B GameOfLife v10 1.2 (ASCII -kkv)	e.distribution.distributionEfficiency()= 0.99701196	~
ScameOflife\$1 class (Binary)	N = 10	
<pre>DemoOfLife\$1.class (Dinary)</pre>	M = 1000 nRows = 11	
CameOfLife\$2.class (Dinary)	nCols = 1001	
Dinary)	P = 4	
DemoOflifetE class (Binany)	+++++ Test succeeded.	
Dinary)	**** START OF X10 EXECUTION STATISTICS ****	
	$activityStart[0:MAX_PLACES-1] = [2, 1, 1, 2]$	
>Jacobi_skewed.java (ASCII-KKV	activityStartSum = 6	
Mai Skewed XIU I.2 (ASCII - KK)	[localActivityStart[0:MAX PLACES-1] = [2, 0, 0, 0]	
Mai France 12 (ASCII - KKV)	remoteActivityStart[0:MAX PLACES-1] = [0, 1, 1, 2]	
MpiExample2.x10 1.2 (ASCII - KKV)	remoteActivityStartSum = 4	
VueensList.java (ASCII -kkv)	$atomicEntry[0:MAX_PLACES-1] = [0, 0, 0, 0]$	
→ 🖓 QueensList.x10 1.2 (ASCII -kkv) 🚩	acomicinitysum = 0	<u> </u>
	6	>

Future X10 Environment: Optimized X10 Deployment on a PERCS HPC system

Towards Increased Productivity in High Performance Embedded Computing: Expanding the frontiers of Virtual Machine Technologies

IBM Metronome project: Real-time Garbage Collection

David Bacon, Perry Cheng, David Grove, V.T. Rajan, Martin Vechev

- Garbage collection is fundamental to Java's value proposition
 - Safety, reliability, programmer productivity
 - But also causes the most non-determinism (100 ms 10 s latencies)
 - RTSJ standard does not support use of garbage collection for real-time
- Metronome is our hard real-time garbage collector
 - Worst-case 2 ms latencies; high throughput and utilization
 - 100x better than competitors' best garbage collection technology

Summary

- X10 Execution Model is designed for productivity and scalability
 - X10 language is our preferred embodiment, but we are also plan to explore other manifestations
- X10 tools are integrated into a common development environment (Eclipse)
 - We expect that the Parallel Tools Platform (PTP) project will seed a new community ecosystem for parallel tools
- Where we are looking for collaboration on X10
 - Porting applications to X10 for evaluation
 - Volunteers productivity studies
 - Standardization of T-PGAS runtime
 - multithreading with asynchronous one-sided data transfers
- Did not have time to cover
 - Clocks, futures, array language details, ...
 - Additional advances in Java technologies (and their use in non-Java langs)
 - Additional work on improving productivity & expertise gap in PERCS project

