
X10 Programming:
Towards High Productivity
High Performance Systems
in the post-Moore’s Law Era

X10 Programming:
Towards High Productivity
High Performance Systems
in the post-Moore’s Law Era

Vivek Sarkar
(vsarkar@us.ibm.com)

Senior Manager, Programming Technologies
IBM T.J. Watson Research Center

This work has been supported in part by the
Defense Advanced Research Projects Agency (DARPA)

under contract No. NBCH30390004.

Vivek Sarkar
(vsarkar@us.ibm.com)

Senior Manager, Programming Technologies
IBM T.J. Watson Research Center

This work has been supported in part by the
Defense Advanced Research Projects Agency (DARPA)

under contract No. NBCH30390004.

2 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Acknowledgments

• Publications

1. "X10: An Object-Oriented Approach to
Non-Uniform Cluster Computing", P.
Charles, C. Donawa, K. Ebcioglu, C.
Grothoff, A. Kielstra, C. von Praun, V.
Saraswat, V. Sarkar. OOPSLA
conference, October 2005 (to appear).

2. "Concurrent Clustered Programming",
V. Saraswat, R. Jagadeesan. CONCUR
conference, August 2005.

3. "X10: an Experimental Language for
High Productivity Programming of
Scalable Systems", K. Ebcioglu, V.
Sarkar, V. Saraswat. P-PHEC workshop,
February 2005.

• X10 Core Team
− Philippe Charles
− Chris Donawa
− Kemal Ebcioglu
− Christian Grothoff
− Allan Kielstra
− Christoph von Praun
− Vijay Saraswat
− Vivek Sarkar

• X10 Tools
− Julian Dolby
− Robert Fuhrer
− Frank Tip
− Mandana Vaziri

3 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Outline

1. X10 Execution Model
• Integration of multiple levels of concurrency and

asynchronous data transfer

2. X10 Language and Environment
• Extended subset of the JavaTM language
• X10 environment is integrated into Eclipse ecosystem
• Synergies between HPC VM technologies (X10) and real-

time VM technologies (Metronome)

4 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Future System Trends

ILP
SIMD
SMT’s

Multi-core
SMP

Implications to software:
1) Exploit intra-process parallelism with non-uniform data affinities
2) Exploit inter-process parallelism in tightly coupled clusters of distributed nodes

Parallelism scaling replaces frequency scaling
as foundation for increased performance

. . .

Memory

PEs,
Node

PEs,

.

Memory

PEs,
Node

PEs,

Scale-up
Parallelism

Scale-out
Parallelism

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
PXUL1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

Heterogeneous Parallelism
(Co-processors, accelerators)

5 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Overview of X10 Execution Model

• Asynchronous activities
− Unification of task parallelism and asynchronous data transfers
− Ultra-lightweight “async” threads, augmented with (optional) loop-level

constructs (“foreach”, “ateach”)

• Coordination of parallel control flow
− “finish” and “clock” constructs

• Coordination of data accesses
− “atomic” blocks, “future” and “force” constructs

• Places
− Extension of Partitioned Global Address Space (PGAS) to

Threaded Partitioned Global Address Space (T-PGAS)
− Place = collection of non-migrating activities and mutable data
− An activity can create a new activity at a local or remote place

6 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Locality Rule in X10 Execution Model

• Any access to a shared mutable datum must be performed by an
activity at the same place as the datum
− Immutable data can be freely access from any place

• A BadPlaceException is thrown when the Locality Rule is violated

heap

stack

control

. . .

Activities &
Activity-local storage

Place-local heap

Partitioned Global heap

heap

stack

control

. . .

Place-local heap

Partitioned Global heap
Outbound
activities

Inbound
activities

Outbound
activity
replies

Inbound
activity
replies

Place Place

Activities &
Activity-local storage

Immutable Data

Globally
Asynchronous

Locally
Synchronous

(Scale-up)

(Scale-out)

Threaded Partitioned Global Address Space model (T-PGAS)

7 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

X10 Execution Model: Examples

1) finish {

async (A[R]) A[R] = 99; // Initiate remote put

// Do other work in parallel

}

2) // Combine remote get and remote put, A[L] = A[R]

async (A[R]){ final int v = A[R];

async (A[L]) A[L] = v; }

3) async (T[j]) atomic T[j]^=k; // Asynchronous atomic block

4) ateach (point[j] : A.distribution)

A[j] = f(j); // Equivalent to async(A[j]) A[j] = f(j)

8 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

X10 Execution Model:
Examples

1) finish {

async (A[R]) A[R] = 99; // Initiate remote put

// Do other work in parallel

}

2) // Combine remote get and remote put, A[L] = A[R]

async (A[R]){ final int v = A[R];

async (A[L]) A[L] = v; }

3) async (T[j]) atomic T[j]^=k; // Asynchronous atomic block

4) ateach (point[j] : A.distribution)

A[j] = f(j); // Equivalent to async(A[j]) A[j] = f(j)

Any local variable accessed by a child
activity must be declared as final

Activity body is in-line --- need not
be extracted into a separate

method or class

9 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

X10 Dynamic Activity Invocation Tree

finish

Activity A0 (Part 1)

async

Activity A1

Activity A4

finish

async

async

Activity A2

async

Activity A3

Activity A0 (Part 3)

Activity A0 (Part 2)

Child activity A2 can out-live parent activity A1

Local variables are passed by
value from parent to child
activity --- no need for a

cactus stack

10 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

X10 Dynamic Activity Invocation Tree

finish

Activity A0 (Part 1)

async

Activity A1

Activity A4

finish

async

async

Activity A2

async

Activity A3

Activity A0 (Part 3)

Activity A0 (Part 2)
Finish serves as root
for both normal and

exceptional
termination (for

designated
subset of
activities)

IndexOutOfBounds
exception

11 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Summary of X10 Execution model

Advantages:

• Any program written with atomic, async, finish, foreach, ateach, and clock
parallel constructs will never deadlock

• Inter-node and intra-node parallelism integrated in a single model

• Remote activity invocation subsumes one-sided data transfer, remote atomic
operations, active messages, . . .

• Finish subsumes point-to-point and team synchronization

• All remote data accesses are performed as activities rules for ordering of
remote accesses follows simply from concurrency model

Applications:

• Can be easily mapped to multiple levels of parallel hardware (SIMD, SMT,
coprocessors, cache prefetch, SMP, clusters, …)

• Can be used as target for multiple high level languages
− X10 language serves as an exemplar

12 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Outline

1. X10 Execution Model
• Integration of multiple levels of concurrency and

asynchronous data transfer

2. X10 Language and Environment
• Extended subset of the JavaTM language
• X10 environment is integrated into Eclipse ecosystem
• Synergies between HPC VM technologies (X10) and real-

time VM technologies (Metronome)

13 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

PERCS Programming Model, Tools and Compilers
(PERCS = Productive Easy-to-use Reliable Computer Systems)

X10 source code
Fortran source code

(w/ MPI, OpenMP)
C/C++ source code

(w/ MPI, OpenMP, UPC)
JavaTM source code

(w/ threads & conc utils) . . .

C/C++
components

Fortran
components

C/C++ runtime Fortran runtime

. . .

X10
Components

X10 runtime

Integrated Parallel Runtime: MPI + LAPI + RDMA + OpenMP + threads

Java
components

Java runtime

Fast extern
interface

Dynamic Compilation + Continuous Program Optimization

Text in blue
identifies

exploratory
PERCS

contributions

Productivity
Measurements

X10
Development

Toolkit

Java
Development

Toolkit

C/C++
Development

Toolkit
+ MPI extensions

Fortran
Development

Toolkit
. . .

Performance
Exploration

X10
Compiler

Java
Compiler

C/C++ Compiler
w/ UPC

extensions

Fortran
Compiler

. . .

Parallel Tools
Platform (PTP)

Eclipse
platform

Refactoring for
Concurrency

14 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

PERCS Programming Model: Position of X10
Language in Software Stack

Very High Level Languages (VHLL’s),

Domain Specific Languages (DSL’s)

X10 Language

Deployment

Implicit parallelism,

Implicit data distributions

X10 places and activities

Mapping of places & activities to
nodes in HPC Platform

Libraries

C
SM

, R
SC

T

LL LAPI

IBM’s MPI

Parallel ESSL

VSD

GPFS SOCKETS

TCP UDP

IP
IF_LSHAL

DD
HYP

Collections, concurrency utils, …

Components Domain-specific frameworks

Integrated Parallel Runtime: MPI + LAPI + RDMA + OpenMP + threads

Managed Runtime Safety guarantees + dynamic comp.

15 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

X10 vs. JavaTM languages

• X10 is an extended subset of the Java language
− Base language = Java 1.4 language

• Java 5 features (generics, metadata, etc.) will be supported in the future

− Notable features removed from Java language
• Concurrency --- threads, synchronized, etc.
• Java arrays – replaced by X10 arrays

− Notable features added to Java language
• Concurrency – async, finish, atomic, future, force, foreach, ateach, clocks
• Distribution --- points, distributions
• X10 arrays --- multidimensional distributed arrays, array reductions, array

initializers,
• Serial constructs --- nullable, const, extern, value types

• X10 supports both OO and non-OO programming paradigms

16 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Sequence Comparison
Example: Local Alignment

• Goal: find the best matching subregions in a pair of sequences
(e.g., DNA, RNA, sequence) so as to narrow down set of
candidates for identifying biological relationships

myLow myHigh

overlap

overlapStart

Each processor computes columns myLow..myHigh using columns
overlapStart..myLow-1 as warm-up

M

N

Parallelization
Algorithm

17 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

X10 Version of Sequence Alignment (Serial Version)

void computeMatrix(int[.] A, value char[] c1, value char[] c2,

int firstCol, int lastCol) {

// Dynamic programming algorithm

for (point[i,j] : [1:N,firstCol:lastCol])

M[i,j] = min4(0, a[i-1,j] + Gap, a[i,j-1] + Gap,

a[i-1,j-1] + (c1[i]==c2[j] ? Match : MisMatch));

}

// Main program

const int N = c1.length, M = c2.length;

. . .

A = new int[[0:N,0:M]];

computeMatrix(A, c1, c2, 1, M);

. . .

18 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

X10 Version of Sequence Alignment
(Distributed Parallel Version)

// Allocate A with a [*,block] distribution

int[.] A = new int[dist.blockColumns([0:N,0:M])];

final int overlap = ceilFrac(N*(-Match),Gap) + N;

// SPMD computation at each place

finish ateach(point [i] : dist.unique()) {

final dist myD = A.distribution | here; // sub-distribution for this place

final int myLow = myD.region.rank(1).low();

final int myHigh = myD.region.rank(1).high();

final int overlapStart = max(0,myLow-overlap);

final dist warmupD = [0:N,overlapStart:myLow]->here;

final int [.] W = new int[warmupD]; // W = local warmup array

computeMatrix(W, c1, c2, overlapStart+1, myLow);

foreach (point[i]:[0:N]) A[i,myLow] = W[i,myLow]; // Copy col myLow

// Compute my section of global array A

computeMatrix(A, c1, c2, myLow+1, myHigh);

}

19 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

X10 Status
• Reference implementation

− Used in PSC productivity study and university pilots
− Nightly regression tests (~ 240 unit tests)
− X10 application set starting to grow beyond unit tests
− Plan for open source release at end of Phase 2

• Performance Prototype
− Initial design for mapping X10 to LAPI using product J9 VM
− Implementation has just begun

• Bring-up of “hello world” X10 application on multiple nodes
• X10 Development Toolkit (X10DT)

− Eclipse tools with basic language support (syntax highlighting, etc.)
− Work started on X10-specific refactorings

• Extract Async
• Introduce atomic sections

• Static Analysis and Ahead-Of-Time Optimization (just starting)
− Optimization of BadPlaceException checks
− Use of static analysis to enhance Extract Async refactoring

20 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

X10 Reference Implementation

Foo.x10

x10c X10 compiler --- translates Foo.x10 to Foo.java,
uses javac to generate Foo.class from Foo.java

Foo.class

X10 source program --- must contain a class
named Foo with a “public static void main(String[]
args) method

X10 Virtual Machine
(JVM + J2SE libraries +

X10 libraries +
X10 Multithreaded Runtime)

External DLL’s

X10 extern
interface

X10 Abstract Performance Metrics
(event counts, distribution efficiency)X10 Program Output

X10 program translated into Java ---
// #line pseudocomment in Foo.java
specifies source line mapping in Foo.x10

Foo.java

x10c Foo.x10

x10 Foo

21 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

X10 Reference Implementation: Screen Shot

22 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Future X10 Environment:
Optimized X10 Deployment on a PERCS HPC system

Fat-tree networkFat-tree networkFat-tree networkFat-tree networkFat-tree networkFat-tree networkFat-tree networkOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networksOne of multiple fat-tree networks

Compute Node I/O Node

Storage and I/O
controllers

Other
Storage
Device

I/O
Device

Interconnect

Thick
X10 VM

Thin
X10 VM

23 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Towards Increased Productivity in
High Performance Embedded Computing:

Expanding the frontiers of Virtual Machine Technologies

Commodity
Virtual

Machines

Real-time VM
Enhancements ---
IBM Metronome

project

HPC VM
Enhancements ---
IBM PERCS/X10

project

Metronome X10

Reduced GC pause
times improves HPC

VM performance

Reduced overhead for asynchronous
atomic operations times improves

Real-time VM performance

24 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Garbage Collection Pause Times
(Customer application)

Worst-case 1.7 ms
Average 260 us

IBM Metronome project:
Real-time Garbage Collection

David Bacon, Perry Cheng, David Grove, V.T. Rajan, Martin Vechev
• Garbage collection is fundamental to Java’s value proposition

− Safety, reliability, programmer productivity
− But also causes the most non-determinism (100 ms – 10 s latencies)
− RTSJ standard does not support use of garbage collection for real-time

• Metronome is our hard real-time garbage collector
− Worst-case 2 ms latencies; high throughput and utilization
− 100x better than competitors’ best garbage collection technology

Application Collector

Time

S
pa

ce

a = allocation rate

c = collection rate

Resulting Schedule

Base Application Memory

25 X10 Programming, HPEC 2005, Sep 2005 V.Sarkar

Summary
• X10 Execution Model is designed for productivity and scalability

− X10 language is our preferred embodiment, but we are also plan to explore
other manifestations

• X10 tools are integrated into a common development environment (Eclipse)
− We expect that the Parallel Tools Platform (PTP) project will seed a new

community ecosystem for parallel tools

• Where we are looking for collaboration on X10
− Porting applications to X10 for evaluation
− Volunteers productivity studies
− Standardization of T-PGAS runtime

• multithreading with asynchronous one-sided data transfers

• Did not have time to cover
− Clocks, futures, array language details, …
− Additional advances in Java technologies (and their use in non-Java langs)
− Additional work on improving productivity & expertise gap in PERCS project

