
How Code Generation Can Save 
Moore’s Law

Gedae, Inc.
www.gedae.com
856 - 231- 4458

HPEC 2005: Will Software Save Moore's Law?



Gedae, Inc.
www.gedae.com 2

Evolution of Hardware

Time

O
pe

ra
tio

ns
 / 

S
ec Size and Speed

N Processor Parallelism

M FPGA/Multicore/Etc.
Parallelism

Précis: Evolution of Hardware

Processor and Chip Level Parallel Execution 
Extends Moore’s Law



Gedae, Inc.
www.gedae.com 3

Précis: Programming Must be Geared Toward 
Parallel Heterogeneous Systems

• Distributed application issues:
– Distribution and re-distribution
– Analysis
– Deadlock avoidance
– Optimizing to different targets

• Software layers do not adequately address these 
issues

AutomatedDeveloper-insuredDistribution

Coded close to HWTradeoff with flexibilityEfficiency

Easily supportedComplex to implementNew Architectures

AutocodingSoftware Layers



Gedae, Inc.
www.gedae.com 4

Précis: Savings Moore’s Law

• For software to extend Moore's Law, it must be
– Efficient
– Robust
– Built in short development cycles 

• Need advanced programming tools that meet these 
demands while targeting multi-processor systems

• If software is to save Moore’s Law, advanced 
programming tools must be in place to save software 
development 



Gedae, Inc.
www.gedae.com 5

Evolution of Hardware

Time

O
pe

ra
tio

ns
 / 

S
ec Size and Speed

N Processor Parallelism

M FPGA/Multicore
Parallelism

Evolution of Hardware

Processor and Chip Level Parallel Execution 
Extends Moore’s Law



Gedae, Inc.
www.gedae.com 6

Programming Must be Geared Toward 
Parallel Heterogeneous Systems

• What’s needed to program distributed applications:
– Distribution and re-distribution
– Analysis
– Deadlock avoidance
– Optimizing to different targets

• Software layers do not adequately address these 
issues

AutomatedDeveloper-insuredDistribution

Coded close to HWTradeoff with flexibilityEfficiency

Easily supportedComplex to implementNew Architectures

AutocodingSoftware Layers



Gedae, Inc.
www.gedae.com 7

Separation of Functionality and 
Implementation

• Functional 
description should 
not change when 
going from one 
implementation to 
another

• Knowledge based 
code generation 
produces an 
efficient 
implementation

Functional
Specification

Heterogeneous HW

Multi Processor
Virtual Machine

Detailed Model

Transformations

Implementatio
n Specification

Generation

Deployable Application
User

Gedae
Vendor

Key

Knowledge



Gedae, Inc.
www.gedae.com 8

Example: Partitioning and Mapping

• Handle through 
simple GUI instead 
of altering the 
functional description



Gedae, Inc.
www.gedae.com 9

Transformations Create the 
Implementation

• Gedae uses its knowledge of the virtual machine to 
create an implementation around the functionality

Sends & 
Recvs

Functionality uncluttered 
by implementation

Implementation augmented with 
internal boxes

Implementation 
requires scheduling 

operations



Gedae, Inc.
www.gedae.com 10

Software Obsolescence and Portability

• Can easily port to new hardware when the functional 
description is free of implementation detail
Implementation A: 

Partitioning for 
Current Single 

Quad Board System

Implementation 
B: Partitioning 
for New Dual 
Quad Board 

System



Gedae, Inc.
www.gedae.com 11

The Software Model 

• Maintaining an internal model of the application 
provides a parallel debugging & analysis environment

Functional
Specification

MP Virtual Machine

Detailed Model

Transformations

Implementatio
n Specification

Generation

User
Gedae
Vendor

KeyAnalysis 
Algorithms

User 
Interface

query
query
result

Examples
Timing statistics
Timing details
Processor load

Deadlock
Blocking

Strip mining
Single step
Breakpoints

Memory usage
Function failure

Processor health



Gedae, Inc.
www.gedae.com 12

Analysis of Implementation and 
Execution: Diagnosing Problems

• Deadlock due to functional error identified by analysis algorithms 

Blocked

Starved

Functionality

Implementation
Execution details



Gedae, Inc.
www.gedae.com 13

Analysis of Implementation and 
Execution: Optimizing Performance

Build 
Application

Test & Optimize

View 
Execution

Slow 
primitive

Granularity 
too low

Not load 
balanced

Try new 
algorithms

Try new 
implementation



Gedae, Inc.
www.gedae.com 14

Portability Through a Parameterized 
Virtual Machine

• Virtual machine is N fully connected processors, each 
running a Runtime Kernel (RTK)

• Target-specific details (e.g., vendor’s BSP) are 
captured in the implementation of the virtual machine

P P

P P

RTK

Pentium

RTK

Pentium

RTK

Pentium

RTK

Pentium

Gigabit Ethernet

BSP BSP BSP BSP

P P

P P

RTK

PPC

RTK

PPC

RTK

PPC

RTK

PPC

Race++

BSP BSP BSP BSP

User
Gedae
Vendor

Key

Vendor A Vendor B

P = Virtual 
Processors



Gedae, Inc.
www.gedae.com 15

Targeting Alternate Architectures

• FPGAs – Not all 
processors use C code
– Need Language Support 

Package to generate 
VHDL, Assembly, etc. for 
those processors

• Multicore – Not all 
processors have enough 
memory for the RTK
– Need to generate 

lightweight processes for 
those processors out(i) = K*(in(i) - out(i-1)) + 

out(i-1)

Single Sample Language



Gedae, Inc.
www.gedae.com 16

Taking the Virtual Machine to the 
Processor Level

• Create virtual processor that emulates target architecture
• Map single sample graph to virtual processor
• Generate low level code through LSP
• Reduce dependency on compilers & vector libraries

The register 
bank and ALU 
for an FPGA 
are quite 
flexible. For 
Multicores
and DSPs
they are fixed.

MAU

MAU
MemoryMemory

ALU

Register
Bank

Program
Memory MAU

IAU




