

A First Look At the Cell: Performance Estimates of a STAP Benchmark on the IBM/Sony/Toshiba Cell Processor

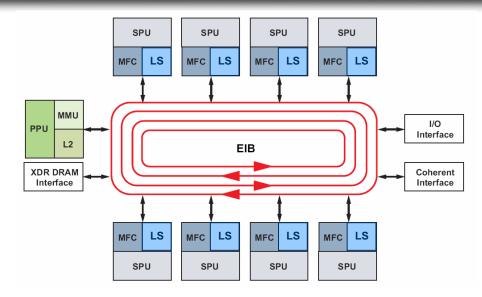
Mr. Luke Cico (Icico@mc.com) Mr. Jon Greene (jgreene@mc.com) Dr. Robert Cooper (rcooper@mc.com) Mercury Computer Systems Chelmsford, MA 01824

The Ultimate Performance Machine

Motivation

What do we want to learn from this exercise?

- Examine Cell architecture under the light of a representative Radar processing chain.
- Analyze data flow patterns between SIMD engines and main memory.
- Identify Cell processor's strengths and constraints for these applications.
- Estimate computational efficiency of the Cell.
- Estimate balance of IO and computation.
- To gain insights into the Cell's programming model and productivity and performance tools that will be needed.
- Not intending in this exercise to examine balance of Cell's external IO to computational throughput. The goal of this exercise is to examine the mapping of a Radar mode to the cell architecture and examine some metrics for a single chip.


Computer Systems, Inc.

The Ultimate Performance Machine

Cell Architecture

The Ultimate Performance Machine

Computer Systems, Inc.

- PowerPC Processor Element (PPE)
 - PowerPC Processor Unit (PPU)
 - 64 Bit PPC core
 - 128-Bit Vector Multimedia Extension (VME) SIMD unit
 - 32K Instruction + 32K Data L1 cache
 - 512K L2 cache
 - 2 way hardware Hyper-Threading

- Synergistic Processor Element (SPE)
 - 8 Per Chip
 - 128-Bit SIMD Synergistic Processing Unit (SPU) is VME-like instruction set and architecture
 - 256K Local Storage (LS) for data and instructions
 - Memory Flow Control (MFC) unit with DMA controller
 - 32-Bit single precision FP. Also supports 64-Bit double precision numerical operations but with less efficiency than single precision

Note: 3GHz is Mercury operating point, CBE can be operated at frequencies greater than 3GHz. Peak Computational Throughput @ 3GHz 3.0 GHz X 8 FLOPS (re. MAC) = 24 GFLOPS per SPE or 192 GFLOPS per chip

Computer Systems, Inc.

The Ultimate Performance Machine

Summary of Results			
	Throughput	compute time	CPU Loading
Stage of Processing	(MFLOPS)	to IO time	(%)
Pre-Processing (video I/Q, pulse compression)	83736.9	2.7	7.2%
Doppler Filtering and data reorganization	32938.1	< 1	2.0%
Adaptive Weight Computation	106912.8	7.5	31.2%
Adaptive Weight Application	11139.5	0.22	4.5%

Summary

- This paper presented an analytical model and performance estimates for a STAP processing chain on the IBM/Sony/Toshiba Cell processor. Follow on work will measure the computational and data flow metrics presented here.
- This paper has estimated that a single cell is likely to produce an order of magnitude increase in sustained performance per chip for these types of applications.
 - Total CPU loading for this application is 44 % on single cell compared to 100% loading on 16 current generation Altivec Processors.
- Mapping the application required lots of fine grained data strip-mining and careful layout of data sets in SPE Local Store memory in order to maintain throughput of chip.
- A DRI programming model has been proposed with a sub-routine engine to allow application designers a higher level of abstraction for managing the data and work flow of the application to the distributed computational resources.