
VSIPL++Pro – A High-Performance VSIPL++ Implementation
Jules Bergmann1, Mark Mitchell1, Stefan Seefeld1, Zack Weinberg1, Nathan Myers1, Rick Pancoast,

1CodeSourcery, LLC; 2Lockheed Marting NE&SS
jules@codesourcery.com, Rick.Pancoast@lmco.com

Introduction
CodeSourcery, LLC is developing VSIPL++Pro, a high-
quality implementation of the VSIPL++ API. Its goal is to
enable the development of high-performance signal-
processing applications that are portable, scalable, and
written at the domain level.
CodeSourcery is working closely with Lockheed Martin
NE&SS Moorestown to use VSIPL++Pro for signal
processing applications from the AEGIS BMD program.
CodeSourcery and Lockheed Martin plan to present
performance, portability, and productivity results from
VSIPL++Pro for both common SIP processing kernels and
real SIP application codes.
Our goal is to demonstrate serial and parallel performance
that is on par with applications written using existing math
and communication libraries, but without sacrificing
application portability or requiring explicit parallelization.

VSIPL++ API
The VSIPL++ API [1] specifies a standardized C++
interface to parallel, high-performance, signal-processing
libraries. VSIPL++ is the next-generation, object-oriented,
parallel version of the popular C-VSIPL API [8]. VSIPL++
provides improvements in portability, productivity, and
performance relative to both VSIPL and ad-hoc approaches.
VSIPL++ delivers high productivity by making it possible
to implement signal and image processing algorithms close
to the domain level. It provides the rich set of functionality
specified by C-VSIPL, including vector math, linear
algebra, and signal processing. C++ object-oriented syntax
allows computations to be expressed directly, without
requiring arcane function names and explicit types.
VSIPL++ achieves high-performance through both the
efficiency of C++ as a systems language, and by using C++
features for high-performance generic programming to
convert domain-level abstractions into efficient code at
compile time. The VSIPL++ API allows for early binding
of computation and communication, allowing setup for
complex functions and communications to be done early,
out of critical computation loops.
VSIPL++'s high-level mechanisms have been designed to
map efficiently onto a range of processor and system
architectures. This separation of application functionality
concerns from the library's performance concerns improves
portability. For example, VSIPL++ blocks abstract details
of how and where data is stored so that an application can
focus on the logical use of data while the implementation
determines the best storage for the platform.
VSIPL++ is an API for both computation and
communication, making it possible to write parallel
programs that are not dependent on a particular paradigm
(shared memory vs message passing) or particular system
configuration (machine size). As a result, applications are
scalable both up and down, easing both development and
technology refreshes.

VSIPL++ portability and scalability simplifies software
development for embedded systems. Initial development
can be done on desktop machines, which are much less
expensive than embedded platforms and often have better
development tools. Scaling allows validation of functional
performance against large volumes of data to be done on
high-performance commodity clusters. Portability allows
the validated software to deploy onto the embedded system
with minimal effort. Moreover, as new technology
becomes available, it can be accommodated without costly
redesign and reimplementation of the software.

The simultaneous goals of performance, portability, and
productivity are often at odds. Many library
implementations are able to achieve two of the three at the
expense of the third. Significant design effort has gone into
VSIPL++ to achieve all three together. Many of the
features and technologies that comprise VSIPL++ have
individually been proven in research. Lessons learned from
previous library designs have been applied [5, 4, 9]. While
early experience using VSIPL++ has been positive [2, 3],
its effectiveness in real usage on real applications has yet to
be gauged.

In this presentation we will present VSIPL++Pro, a high-
quality implementation of the VSIPL++ API designed from
the ground up to take full advantage of VSIPL++'s
potential. We will present implementation details of the
library along with performance results for both SIP kernels
and real SIP applications. The following sections describe
several such areas. As the first high-quality implementation
available, VSIPL++Pro offers an exciting glimpse at
VSIPL++ potential.

Expression Templates
VSIPL++Pro allows developers to efficiently program close
to the domain level. Consider an image non-uniformity
correction (NUC) in VSIPL++:
Img = gain * Raw + offset;

This has clear notational convenience over the equivalent
C-VSIPL:
vsip_mmul_f(tmp, gain, Raw);
vsip_madd_f(Img, tmp, offset);

Moreover, VSIPL++ gives better performance. Using
expression templates, a technique that allows libraries to
evaluate an entire expression at once [10], VSIPL++Pro
transforms this expression into a single fused loop:
for (i=0; i<width*height; ++i)
 Img[i] = gain[i] * Raw[i] + offset[i];

By avoiding the temporary, VSIPL++ improves cache
locality and reduces IO bandwidth.

Math Library Interface
While loop-fusion can out perform optimized library
routines in some cases, it is often advantageous to use
available libraries, especially for complex mathematical

mailto:jules@codesourcery.com
mailto:Rick.Pancoast@lmco.com

functions such as transforms and decompositions.
Developing highly optimized routines for these requires
significant skill, time, and effort. Moreover, system and
processor vendors have invested significant effort to
develop libraries that efficiently utilize their products.

Data-Parallelism
VSIPL++ is an API for both computation and
communication. This eliminates the need to move data
between different libraries. Moreover, VSIPL++'s
approach to parallelism removes explicit assumptions on
platform specifics such the number of processors or the
rank of the local processor. Together these result in greater
programming productivity and greater program scalability
[6].

 In previous work we demonstrated a prototype parallel
VSIPL++ based on the reference implementation and
showed that parallel VSIPL++ programs can have no
overhead relative to comparable VSIPL/MPI programs [7].

Figure 1FFT Kernel Performance

VSIPL++Pro will fully implement the Parallel VSIPL++
API. It currently implements distributed vectors, matrices,
and tensors with block-cyclic mappings in all dimensions,
parallel assignment (“corner turns”), and data-parallel
expressions. It is planned to provide full support for data-
parallel operations, including signal-processing objects.

Rather than reimplement these routines, VSIPL++Pro has a
math library interface that allows the highest performance
libraries available for a platform to be used. VSIPL++Pro's
data structures are designed to allow efficient access to data
in formats suitable for math libraries. VSIPL++ API
functions use a dispatch mechanism to determine the most
appropriate routine for a computation. Users can pass data
from VSIPL++ data structures to legacy algorithms and
libraries implementing functionality not provided by
VSIPL++.

VSIPL++Pro's software architecture separates parallel
VSIPL++ concerns (mappings, data layout, etc) from
communication library concerns (efficient message
transfer). Currently MPI is used for communications, but
support for PAS is planned for 2006.

Signal Processing Application Results
CodeSourcery and Lockheed-Martin are currently working
with VSIPL++Pro to implement signal-processing
applications for the AEGIS BMD program. Results from
this effort will be presented at HPEC.

VSIPL++Pro's dispatch mechanism is extensible. In the
future, users will be able to extend it to consider additional
libraries. This will simplify the porting of VSIPL++Pro to
new platforms, and allow applications to take advantage of
new algorithm development in the research community. CodeSourcery has also implemented several signal-

processing demonstration programs for SAR and MTI, for
which performance will also be available.

The end result is that VSIPL++ programs will be able to
take advantage of the best performance available for each
platform. Availability
Figure 1 characterizes VSIPL++Pro's current FFT
performance on a 2 Ghz Pentium-M with 1024KB of L2
cache. For 1024 point FFTs, performance is 36% of peak.
Figure 2 demonstrates VSIPL++Pro's FFT performance
while executing an MTI (moving target indicator)
application. From 0.002s to 0.008s, fast convolution is
being performed using forward and inverse 512 point FFTs.
From 0.010s to 0.011s doppler filtering is being performed

using 256 point FFTs. At the HPEC workshop, more
complete characterizations will be presented, including
comparisons against vendor optimized libraries.

VSIPL++Pro will be available under two licenses. For
commercial users, a commercially licensed will be available
priced on a per-developer-seat basis with no royalty fees or
hidden costs. In addition, an open source licensed version
using the GPL will be available. This dual licensing
provides the guaranteed support and maintenance that
commercial users require, while making the library freely
available for potential users to evaluate and for the research
community.

VSIPL++Pro will be available for desktop and commodity
clusters in Q4 2005. This release will be optimized for the
Intel C++ compiler, Intel Performance Primitives (IPP)
math library, and MPICH. VSIPL++Pro will be released
for embedded Mercury systems in 2006. For more detailed
availability information, including support for other
platforms and math libraries, please contact CodeSourcery
or visit www.codesourcery.com.

Figure 2FFT Application Performance

References
[1] CodeSourcery, LLC. VSIPL++ Specification 1.0. Georgia

Tech Res. Corp. 2005 [online] Available: http://www.hpec-
si.org.

[2] J. Cook, et al. “Implementation of a Shipboard Ballistic
Missile Defense Processing Application using the HPEC-SI
API,” HPEC Workshop, Lexington, MA 2004.

[3] D. Cottell and R. Judd. “Evaluation of the VSIPL++ Serial
Specification using the DADS Beamformer,” HPEC
Workshop, Lexington, MA 2004.

[4] Parallel Object-Oriented Methods and Applications. [online]
http://www.nongnu.org/freepooma.

[5] H. Hoffmann, et al, “Achieving Portable Task and Data
Parallelism on Signal Processing Architectures,” HPEC
Workshop, Lexington, MA, 2000.

[6] J. Lebak. et al. “Parallel VSIPL++: an open standard software
library for high-performance parallel signal processing,”
Proceedings of the IEEE, Vol 93, Issue 2, Feb. 2005.

[7] M. Mitchell and J. Oldham. “VSIPL++: Parallel
Performance,” HPEC Workshop, Lexington, MA 2004.

[8] D. A. Schwartz, R. R. Judd, W. J. Harrod, and D. P. Manley,
Vector, Signal, and Image Processing Library (VSIPL) 1.0
application programmer's interface: Georgia Tech Res. Corp,
2000 [online] Available: http://www.vsipl.org.

[9] T. Veldhuizen, Techniques for Scientific C++, Indiana
University CS-TR-542, Aug. 2000.

[10] T. Veldhuizen, “Expression templates,” C++ Rep., vol. 7, no.
5, pp. 26-31, 1995.

