

Applying Model Driven Architecture to Radar Systems
Terri Potts1, Stefanie Chiou2, Gregory Eakman, Ph.D.3

(1)Integrated Defense Systems, Raytheon Company, Sudbury, MA 01776
E-mail: terri_potts@raytheon.com, Tel: (978)440-2387

(2) Integrated Defense Systems, Raytheon Company, Sudbury, MA 01776
E-mail: Stefanie_C_Chiou@raytheon.com, Tel: (978)440-2790

(3) PathFinder Solutions, Foxboro, MA 02035
E-mail: grege@pathfindermda.com, Tel: (508)265-5112

Introduction1

Raytheon Company has been applying the use of Model
Driven Architecture (MDA) to develop radar systems for
the past three years. Pilot projects done on key radar
systems components demonstrate MDA’s applicability to
real-time, embedded, and performance critical systems
while providing other benefits such as increased
productivity and product line components.

Background
MDA is a framework to specify applications and
components as platform independent models (PIMs) and
uses transformations to map these models onto target
platforms. PIMs focus on the business logic and manage
the complexity of systems through separation of concerns,
not only between components, but also from the
deployment platform, including programming language,
operating system, communications, and distribution
topology.

The PIM’s higher level of abstraction and additional
transformation step may also introduce inefficiencies
unacceptable to high performance systems. However, the
MDA framework and an open transformation environment
allow tuned platform specific patterns and hand optimized
code to be integrated to meet performance requirements.

This report covers three of the case studies applying MDA
to radar components, a pilot project for an executive control
component to evaluate the MDA process and tools, radar
scheduling to assess strict performance requirements, and
signal processing to address distributed parallel processing.

Fault Operability Processing
The initial pilot project on the executive control, health, and
calibration components were a re-implementation of
existing legacy code that were reintegrated with the system.
The results of this project included a measured a significant
increase in productivity and lower defect rates though
integration and field tests.

Manual review of generated code concluded that while it
may not be as good as the best real-time code writer could
make it, it was better than the average team. The
transformation rules for generating the code could also be

extended to include new design and implementation
patterns.

Radar Scheduling
MDA was then applied to the area of radar scheduling, a
critical component of radar systems with strict performance
and real-time requirements. This project’s goal was to
create a scheduler to be used in a product line, supporting a
wide variety of scheduling requirements and running on
multiple target platforms.

Scheduling is made up of three phases with different time
horizons, long term planning, short term planning, and
scheduling. Different radar programs in Raytheon
Company’s product lines have variations of scheduling
requirements and algorithms. The scheduling PIM isolates
the variations from the common processing using
configuration parameters and overloaded operations.
Markings and transformations optimize out the code and
control paths not relevant to a specific target deployment.

Performance measurements were made on target platforms
to determine the performance of the generated code.
Measurements taken include total time (combining planning
and scheduling), and individual times for scheduling.
Multiple scenarios with different search and tracking
parameters demonstrated sufficient performance on the
target platforms. On two of the deployment platforms, the
memory managers of the operating system were used by
default, but were performance bottlenecks. Changes were
made to the transformation rules to use an optimized
memory manager, requiring no changes to the models.

As an example of the flexibility of the MDA, these models
have been deployed on multiple hardware platforms and
operating systems, in multiple languages, and with multiple
deployment topologies. For example, in order to ensure
that the planning did not interfere with the real-time
deadlines, the scheduler was broken out from the planning
algorithms into a separate, higher priority thread. This
change also required no changes to the MDA model. Three
key aspects of MDA enabled this flexibility – platform
independence, objects, and state machines. Platform
independence kept the model of the scheduling algorithms
separate from the concerns of deployment topology.
Objects representing planned schedule assignments are no
longer accessed by the planning algorithms, enabling
separation with a minimum of inter-task overhead. State
machines express the algorithms in an asynchronous

manner – a natural fit for event-driven, time-dependent
systems. It is easier to implement an asynchronous design
in a synchronous manner than it is to implement a
synchronous design in an asynchronous manner.

Signal Processing
We then applied MDA to a signal processing project, one of
the most complex parts of a radar system. The signal
processor must convert raw data from the sensor into
detection data for the tracker with real-time performance
and latency requirements. In order to achieve the required
performance, a radar signal processor must distribute its
processing across multiple processors running in parallel.

The low level algorithms are written in C on top of already
well optimized math libraries. Since this is where the bulk
of the time is spent, hand tuning to the bit level to take
advantage of CPU capabilities is well worth the investment.

However, signal processing algorithms comprise only a part
of what the signal processor must do. A large part of the
signal processor is dedicated to the management and
movement of data between processors. We applied MDA
to solve the data distribution problem, with an eye toward
platform independence.

An MDA model of data flow model was built on platform
specific mechanisms, providing a flexible framework to not
only easily change target topology, but also the underlying
transport mechanisms and operating systems. The
separation of concerns allows highly tuned hand written
code for the math algorithms to be integrated with
generated code to achieve performance goals.

Conclusions
MDA has proved its worth in its application to these
performance critical radar components. Platform
independent models manage the complexity of developing
radar systems and have shown large productivity
improvements. Performance and real-time goals have been
achieved through the use of open and customizable
transformations tuned to the target platform and the ability
to easily integrate hand optimized code.

