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Introduction1

Raytheon Company has been applying the use of Model 
Driven Architecture (MDA) to develop radar systems for 
the past three years.  Pilot projects done on key radar 
systems components demonstrate MDA’s applicability to 
real-time, embedded, and performance critical systems 
while providing other benefits such as increased 
productivity and product line components.   

Background 
MDA is a framework to specify applications and 
components as platform independent models (PIMs) and 
uses transformations to map these models onto target 
platforms.  PIMs focus on the business logic and manage 
the complexity of systems through separation of concerns, 
not only between components, but also from the 
deployment platform, including programming language, 
operating system, communications, and distribution 
topology.  

The PIM’s higher level of abstraction and additional 
transformation step may also introduce inefficiencies 
unacceptable to high performance systems. However, the 
MDA framework and an open transformation environment 
allow tuned platform specific patterns and hand optimized 
code to be integrated to meet performance requirements. 

This report covers three of the case studies applying MDA 
to radar components, a pilot project for an executive control 
component to evaluate the MDA process and tools, radar 
scheduling to assess strict performance requirements, and 
signal processing to address distributed parallel processing.   

Fault Operability Processing 
The initial pilot project on the executive control, health, and 
calibration components were a re-implementation of 
existing legacy code that were reintegrated with the system.  
The results of this project included a measured a significant 
increase in productivity and lower defect rates though 
integration and field tests.  

Manual review of generated code concluded that while it 
may not be as good as the best real-time code writer could 
make it, it was better than the average team.  The 
transformation rules for generating the code could also be 

 
 

extended to include new design and implementation 
patterns.   

Radar Scheduling 
MDA was then applied to the area of radar scheduling, a 
critical component of radar systems with strict performance 
and real-time requirements.  This project’s goal was to 
create a scheduler to be used in a product line, supporting a 
wide variety of scheduling requirements and running on 
multiple target platforms.   

Scheduling is made up of three phases with different time 
horizons, long term planning, short term planning, and 
scheduling.  Different radar programs in Raytheon 
Company’s product lines have variations of scheduling 
requirements and algorithms.  The scheduling PIM isolates 
the variations from the common processing using 
configuration parameters and overloaded operations. 
Markings and transformations optimize out the code and 
control paths not relevant to a specific target deployment.   

Performance measurements were made on target platforms 
to determine the performance of the generated code.  
Measurements taken include total time (combining planning 
and scheduling), and individual times for scheduling.  
Multiple scenarios with different search and tracking 
parameters demonstrated sufficient performance on the 
target platforms.  On two of the deployment platforms, the 
memory managers of the operating system were used by 
default, but were performance bottlenecks.  Changes were 
made to the transformation rules to use an optimized 
memory manager, requiring no changes to the models.   

As an example of the flexibility of the MDA, these models 
have been deployed on multiple hardware platforms and 
operating systems, in multiple languages, and with multiple 
deployment topologies.  For example, in order to ensure 
that the planning did not interfere with the real-time 
deadlines, the scheduler was broken out from the planning 
algorithms into a separate, higher priority thread.  This 
change also required no changes to the MDA model.  Three 
key aspects of MDA enabled this flexibility – platform 
independence, objects, and state machines.  Platform 
independence kept the model of the scheduling algorithms 
separate from the concerns of deployment topology.  
Objects representing planned schedule assignments are no 
longer accessed by the planning algorithms, enabling 
separation with a minimum of inter-task overhead.  State 
machines express the algorithms in an asynchronous 



 

manner – a natural fit for event-driven, time-dependent 
systems.  It is easier to implement an asynchronous design 
in a synchronous manner than it is to implement a 
synchronous design in an asynchronous manner.   

Signal Processing 
We then applied MDA to a signal processing project, one of 
the most complex parts of a radar system.  The signal 
processor must convert raw data from the sensor into 
detection data for the tracker with real-time performance 
and latency requirements.  In order to achieve the required 
performance, a radar signal processor must distribute its 
processing across multiple processors running in parallel. 

The low level algorithms are written in C on top of already 
well optimized math libraries.  Since this is where the bulk 
of the time is spent, hand tuning to the bit level to take 
advantage of CPU capabilities is well worth the investment.   

However, signal processing algorithms comprise only a part 
of what the signal processor must do.  A large part of the 
signal processor is dedicated to the management and 
movement of data between processors.  We applied MDA 
to solve the data distribution problem, with an eye toward 
platform independence.   

An MDA model of data flow model was built on platform 
specific mechanisms, providing a flexible framework to not 
only easily change target topology, but also the underlying 
transport mechanisms and operating systems.  The 
separation of concerns allows highly tuned hand written 
code for the math algorithms to be integrated with 
generated code to achieve performance goals. 

Conclusions 
MDA has proved its worth in its application to these 
performance critical radar components.  Platform 
independent models manage the complexity of developing 
radar systems and have shown large productivity 
improvements.  Performance and real-time goals have been 
achieved through the use of open and customizable 
transformations tuned to the target platform and the ability 
to easily integrate hand optimized code.   

 




