

How Code Generation Will Save Moore’s Law
William I. Lundgren (wlundgren@gedae.com),

Kerry B. Barnes (kbarnes@gedae.com), James W. Steed (jsteed@gedae.com)
Gedae, Inc., 1247 Church Road, Suite 5, Moorestown, NJ 08057

Introduction
If software is to save Moore’s Law, advanced
programming tools must be in place to save software
development. Chip density will eventually reach a
limit where a single chip cannot be made any faster.
The choice must be made (and is being made today) to
spend money adding more hardware components
rather than enhancing single processors. These multi-
component systems rely on massive parallelism and
pipelined processing to continue the trend of Moore’s
Law in creating faster applications and doing more
operations in real-time. However, more complex
systems are also much more difficult to program. Such
systems are likely a heterogeneous collection of
processors combining lightweight processors
(AltiVecs, TigerSHARCs) with hardware components
(FPGAs, ASICs), attempting to fit the most processing
power possible into a single board or chassis. Teams
of scientists with diverse, specialized knowledge must
be assembled in order to develop an application on
these hardware systems, resulting in long development
times and prohibitive costs for development of new
software.

Parallelism and Distribution in Software
Development
In order to support programming modern hardware
systems, parallelism and distribution must be integral
parts of software development toolkits. The toolkits
must be able to support a wide range of processors,
from workstations to DSPs to FPGAs, and create code
which implements the entire system, from the
firmware which does the front end processing to the
GUI that runs on the workstation to analyze the data,
including all interprocessor communication. If the
development of hardware systems with more
programmable components is to fuel Moore’s Law,
this evolution is of no practical use if the components
are not easily programmable and if their interaction is
not addressed by the toolkits.

Furthermore, these toolkits must allow the distribution
of processing to be easily reconfigured, both for
experimentation during development and for easily
adapting to future generations of hardware. Currently
many software development projects involve re-

implementing the same algorithm on a new system.
Even if the system comes from the same vendor with
the same board support package interface, the
processing must be redistributed in order to achieve
the higher throughput provided by the increased
number of processors or their higher speeds. However,
under many software development methods, the
parallelism of the legacy software is explicit in the
code, and the development team must make the choice
to analyze the code to find and alter the parallelism or
start from scratch. Certainly algorithm development
cannot help fuel the future development of Moore’s
Law if so many algorithm developers must focus on
the rote work of re-implementing yesterday’s ideas.

Software Obsolescence
Software development tools must maintain a
separation between the functional description (what
data processing is to be done) and the implementation
detail (target-specific information necessary for
implementation, such as the distribution) in order to
help maintain the course of Moore’s Law and easily
adapt to advances in hardware. The code generation
used by these tools should create another level of
abstraction over source code. Some of the
implementation detail that is included in source code
should not be necessary when applying code
generation. While a graphical representation is used in
place of source code by many code generators, the
implementation detail (such as sends and receives) is
still included in the graphical representation. In such
cases, the code generator has added little value. The
application is not portable and cannot be easily
reconfigured. When the next generation of hardware
arrives, the application must still be analyzed to
determine the parallelism or, failing that, the
development team must fully re-implement the
application. Improvements in coding productivity are
also limited because this implementation detail is such
an integral part of the software design. The essential
functionality of the application is obscured by the
amount of implementation detail added to the
specification, making the application much more
difficult to program than the algorithms that form it.
This separation between functionality and
implementation can be done by maintaining two

sources of application information – one that describes
the functionality and a second that specifies how that
functionality is to be implemented. Many copies of the
implementation specification can be maintained for a
single functional description.

Challenges for the Code Generator
In order for the code generator to successfully create
this separation, there are two key challenges. The first
challenge is to discover the essential functional
information that must be included in the programming
language. Functionality specified by the programming
language must describe the application sufficiently
such that when the code generation makes radical
changes to the implementation, the specified behavior
is maintained. A second challenge is the need for
intelligent algorithms that transform the functional
and implementation specification into an
implementation that runs on a heterogeneous (RISC,
DSP, FPGA, and other architectures) multiprocessor
target. Many concepts have been used in developing
programming languages for code generation, however
few tools have adequately addressed these two
challenges to allow a wide range of applications to be
developed for a wide range of heterogeneous targets.
Data flow is a good abstraction that meets the needs of
some functional requirements. Object oriented
concepts provide for the localization of related
functionality. State diagrams can directly express part
of the functionality. Each is limited. We need a fully
integrated language to directly state the diverse
functional requirements of software development,

extending each idea as necessary. As the language is
being developed we must also create a full suite of
algorithms that transform the functional description
into an implementation. The suite must take into
account the variability of the implementation
specification and target, and it must not sacrifice
efficiency.

Gedae is an example of such an approach. The
structure of Gedae is shown in figure 1. This paper
will discuss how Gedae has been designed to support
the development of software for next generation
hardware systems which combine more and more
components on a smaller footprint. It will discuss how
Gedae’s language has been designed to allow a wide
range of applications to be developed, it will highlight
several of the 100+ transformations Gedae uses to
modify the user’s specification into an efficient
implementation, and it will describe Gedae’s virtual
machine which enables wide portability, as well as
recent extensions to the virtual machine which support
targeting FPGAs. Figure 2 shows the structure of
Gedae adapted to program hardware architectures –
including FPGAs and arrays of processors with
embedded memory. As the parallelism of hardware
increases to keep pace with Moore’s Law, tools like
Gedae will become more and more necessary for
dealing with the complexities of multiprocessor
implementations and avoiding the pitfalls of software
obsolescence.

Gedae-RTL
Graph

Transformations

Netlist Data
Structure

LSP 1

Low level
code

-

Assembler

Object File

User’s Impl.
Settings

Hardware
Description

 Simulation

LSP 2

Figure 1 - Structure of Gedae Adapted to Program Hardware
for example FPGAs or PIMs

Functional
Specification

Heterogeneous HW
Virtual Machi en

Detailed Model

Transformations

Implementation

Generation

Deployable Application

 User
 Gedae
 Vendor

Key

Figure 1 – Structure of Gedae

