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Extended Abstract 
 
Combining Moore’s law, which describes hardware 
costs/performance, and Amdahl’s law, which 
describes algorithm to multiple chip speed-up 
effects, with new communication models is shown 
to maintain or enhance Moore’s model. 
 
Moore’s law is usually interpreted to mean “the 
number of transistors that can fit onto a square inch 
of silicon doubles every 12 months.”1,2   However, 
Moore’s statement covered much more than the 
density doubling discussed so often.  A new 
perspective is important if we are to be able to 
extend the law’s life using software.    Moore stated: 
 

“The complexity for minimum component 
costs has increased at a rate of roughly a 
factor of two per year.”2 

 
Rather than a statement of raw density, it is a 
statement of the most cost effective chip 
manufacturing density, taking into consideration 
four factors: 1) the maximum number of transistors 
per square inch, 2) the size of the wafer, 3) the 
average number of defects per square inch,  and 4) 
the costs associated with integrating multiple 
components (interconnection, packaging, PCB,  
other multi-chip integration costs).3  A valid 
interpretation of Moore’s principal, showing 
Moore’s results, is given by the following equation: 
 

CU = CI(nc) + f(nf) (Cw nc nf Af) / (P(nf) Aw) 
 
Where: CU    = total cost per unit 
             CI     = chip integration cost per unit 
             Cw    = wafer fabrication cost 
             nc      = # of chips per unit 
             nf         = # of features per chip 
             Af      = average feature area 
             P(nf)  = % yield for chips with nf features 
             Aw     = size of wafer (area) 
             f(nf)   = percentage of Aw covered by chips 
 
Further, cost effective performance is related to the 
number of features that can be placed on a chip, the 
chip clock rate, and the energy consumed by the 
chip.  We will extend the idea of the number of 
features per chip to include the concept that a feature 
is a structure that can transform a bit pattern.  Since 
a mathematical algorithm performs a transform 

using the chip features, we can associate the idea of 
transforms per unit time with algorithms. 
 
If we fix the performance, then increasing the 
number of transforms per unit time requires an 
increase in the number of chips (processors) used.  
Using multiple processors requires the use of 
Amdahl’s law. 
 
Amdahl's law is the standard way of describing 
parallel speed-up.4  By deriving this law directly 
from parallel communication and parallel 
information processing theory, we show the roles 
played by communication channels, communication 
topology, and processor speeds in recasting the 
interpretation of the terms of the law.  This 
interpretation requires the coupling of 
communication and computation effects.   We show 
the communication overhead to be: 
 

Ω = tλ1 + t’1 +  Σ max((t’i,i+1 - tl
i+1),0) + td

 
Then Amdahl's law can be expressed as: 
 

S(P) =  (Ωsingle + tp)/[Ωmulti + t c + T(tp,P)/P] 
 
Where:   S(P)  ≡ Speed-up of  P processors (performance). 
               Ωsingle ≡ Single processor I/O overhead. 
               Ωmulti  ≡ Multi-processor I/O overhead. 
 tλ1 ≡ initial communication latency. 
 tc  ≡ cross-communication data transfer time for   
                          current  model 
 t’1 ≡ initial data priming time. 
 td  ≡ data draining time. 
 t’i,i+1 ≡ cross communication data priming times. 
 tp  ≡ processing time on single processor. 
 T(tp,P) ≡ processing time on P processors. 
 P ≡ number of processors. 
 tl

i+1 ≡ lead time from start of overlapped exchange to 
           end of processing step i. 
 
Combining this interpretation with several new 
communication models, we demonstrate how 
software can be used to extend the life of Moore’s 
law.  Figure 1 is an example of a logical 80-
processor scatter/gather model.5  The bi-section 
bandwidth = 20 x the individual processor port 
bandwidths.  Figure 2 shows the end-to-end effect 
of this new communication model on an algorithm 
using 80 processors in parallel.  It becomes clear that 
the term software includes the communication 
model used. 



1Communication Times: 432  
 

Figure 1: 80-Node Communication Model 
 
 

Figure 2: 20,000 Digits of  ex Observed Performance 
 
Moore's law can be expressed in terms of operations 
per second by creating a function O(nf,a) which 
defines the number of operations per second 
achieved by a processor with nf features on some 
algorithm a.  Though this cost analysis applies to 
one processor, we can extend Moore's law to multi-
processor systems with the aid of Amdahl's Law.  
We define the integration cost of a multi-processor 
system and the total system cost as: 
 

CI(P) = PN(Cnic + Cfabric) 
Cs(P) = PCU + CI(P) 

 
Where: CI(P) ≡ parallel integration cost 

CS(P) ≡ total system cost 
 P ≡ number of processors 
 N ≡ number of channels per processor 
 Cnic ≡ interface cost per channel 
 Cfabric ≡ network fabric cost per processor 
 
The effective cost performance factor for parallel 
systems then takes the form: 
 

E = S(P) ((PCU + CI(P))/(O(nf,a)P) 
 

We can then define the optimized system cost ES as 
the minimum of E w.r.t. P.  This is the minimum 
cost needed to achieve a performance level, given 
the hardware and software characteristics of a 
system and the algorithm it is operating on.  Figure 
3 shows the curves of five different communication 
models.  Each model generates a different speed-up 
effect (sub-linear, partial linear, linear, partial super-
linear, and super-linear).   Thus, the 
cost/performance curve generated by each effect is 
shown, with the standard Moore’s law 
cost/performance curve for comparison.  
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Figure 3: Modified Moore Cost Performance Chart.  Each 
Color Represents a Different Communication Model Maximum Effect-

Minimum Equipment, 
used to Calculate ES

Non-optimal Speed-up,  
used to Calculate E 

 
Any adjustment that moves the cost curve to the 
right and/or down, as shown by ES, represents an 
effective hardware performance improvement.  
Finding Cs and Es for several algorithms allows the 
generation of a Kiviat diagram, Figure 4, that can be 
used to represent the total system cost/performance.  
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Figure 4:  System Cost/Performance Kiviat Diagram 
______________________________________ 
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