
Combining Moore’s Law, Amdahl’s Law, and Communication
How Software Can Save Moore’s Price/Performance Model

Kevin David Howard, Chief Technology Officer, MPT, Inc., Kevin@massivelyparallel.com
James A. Lupo, Senior Research Scientist, MPT, Inc., James@massivelyparallel.com

Extended Abstract

Combining Moore’s law, which describes hardware
costs/performance, and Amdahl’s law, which
describes algorithm to multiple chip speed-up
effects, with new communication models is shown
to maintain or enhance Moore’s model.

Moore’s law is usually interpreted to mean “the
number of transistors that can fit onto a square inch
of silicon doubles every 12 months.”1,2 However,
Moore’s statement covered much more than the
density doubling discussed so often. A new
perspective is important if we are to be able to
extend the law’s life using software. Moore stated:

“The complexity for minimum component
costs has increased at a rate of roughly a
factor of two per year.”2

Rather than a statement of raw density, it is a
statement of the most cost effective chip
manufacturing density, taking into consideration
four factors: 1) the maximum number of transistors
per square inch, 2) the size of the wafer, 3) the
average number of defects per square inch, and 4)
the costs associated with integrating multiple
components (interconnection, packaging, PCB,
other multi-chip integration costs).3 A valid
interpretation of Moore’s principal, showing
Moore’s results, is given by the following equation:

CU = CI(nc) + f(nf) (Cw nc nf Af) / (P(nf) Aw)

Where: CU = total cost per unit
 CI = chip integration cost per unit
 Cw = wafer fabrication cost
 nc = # of chips per unit
 nf = # of features per chip
 Af = average feature area
 P(nf) = % yield for chips with nf features
 Aw = size of wafer (area)
 f(nf) = percentage of Aw covered by chips

Further, cost effective performance is related to the
number of features that can be placed on a chip, the
chip clock rate, and the energy consumed by the
chip. We will extend the idea of the number of
features per chip to include the concept that a feature
is a structure that can transform a bit pattern. Since
a mathematical algorithm performs a transform

using the chip features, we can associate the idea of
transforms per unit time with algorithms.

If we fix the performance, then increasing the
number of transforms per unit time requires an
increase in the number of chips (processors) used.
Using multiple processors requires the use of
Amdahl’s law.

Amdahl's law is the standard way of describing
parallel speed-up.4 By deriving this law directly
from parallel communication and parallel
information processing theory, we show the roles
played by communication channels, communication
topology, and processor speeds in recasting the
interpretation of the terms of the law. This
interpretation requires the coupling of
communication and computation effects. We show
the communication overhead to be:

Ω = tλ1 + t’1 + Σ max((t’i,i+1 - tl
i+1),0) + td

Then Amdahl's law can be expressed as:

S(P) = (Ωsingle + tp)/[Ωmulti + t c + T(tp,P)/P]

Where: S(P) ≡ Speed-up of P processors (performance).
 Ωsingle ≡ Single processor I/O overhead.
 Ωmulti ≡ Multi-processor I/O overhead.
 tλ1 ≡ initial communication latency.
 tc ≡ cross-communication data transfer time for
 current model
 t’1 ≡ initial data priming time.
 td ≡ data draining time.
 t’i,i+1 ≡ cross communication data priming times.
 tp ≡ processing time on single processor.
 T(tp,P) ≡ processing time on P processors.
 P ≡ number of processors.
 tl

i+1 ≡ lead time from start of overlapped exchange to
 end of processing step i.

Combining this interpretation with several new
communication models, we demonstrate how
software can be used to extend the life of Moore’s
law. Figure 1 is an example of a logical 80-
processor scatter/gather model.5 The bi-section
bandwidth = 20 x the individual processor port
bandwidths. Figure 2 shows the end-to-end effect
of this new communication model on an algorithm
using 80 processors in parallel. It becomes clear that
the term software includes the communication
model used.

1Communication Times: 432

Figure 1: 80-Node Communication Model

Figure 2: 20,000 Digits of ex Observed Performance

Moore's law can be expressed in terms of operations
per second by creating a function O(nf,a) which
defines the number of operations per second
achieved by a processor with nf features on some
algorithm a. Though this cost analysis applies to
one processor, we can extend Moore's law to multi-
processor systems with the aid of Amdahl's Law.
We define the integration cost of a multi-processor
system and the total system cost as:

CI(P) = PN(Cnic + Cfabric)
Cs(P) = PCU + CI(P)

Where: CI(P) ≡ parallel integration cost

CS(P) ≡ total system cost
 P ≡ number of processors
 N ≡ number of channels per processor
 Cnic ≡ interface cost per channel
 Cfabric ≡ network fabric cost per processor

The effective cost performance factor for parallel
systems then takes the form:

E = S(P) ((PCU + CI(P))/(O(nf,a)P)

We can then define the optimized system cost ES as
the minimum of E w.r.t. P. This is the minimum
cost needed to achieve a performance level, given
the hardware and software characteristics of a
system and the algorithm it is operating on. Figure
3 shows the curves of five different communication
models. Each model generates a different speed-up
effect (sub-linear, partial linear, linear, partial super-
linear, and super-linear). Thus, the
cost/performance curve generated by each effect is
shown, with the standard Moore’s law
cost/performance curve for comparison.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

Moore’s Law
Partial Linear
Linear
Partial Superlinear
Superlinear

Cu

Cs

E

Es
Performance

R
el

at
iv

e
C

o
st

Low High

Low

Sublinear
High

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

Number of Processors

Linear Scaling
Line

Figure 3: Modified Moore Cost Performance Chart. Each
Color Represents a Different Communication Model Maximum Effect-

Minimum Equipment,
used to Calculate ES

Non-optimal Speed-up,
used to Calculate E

Any adjustment that moves the cost curve to the
right and/or down, as shown by ES, represents an
effective hardware performance improvement.
Finding Cs and Es for several algorithms allows the
generation of a Kiviat diagram, Figure 4, that can be
used to represent the total system cost/performance.

Alg. 6

Alg. 1

Alg. 2

Alg. 3

Alg. 4

Alg. 5

s

Es

Es

Es

C

sC

sE

s

Cs
Cs

Cs

Cs

Es

E

Figure 4: System Cost/Performance Kiviat Diagram

[1] http://www.intel.com/technology/silicon/mooreslaw/
[2] Moore, G., Electronics, Vol. 38, Number 8, April 19,
1968
[3] http://news.com.com/New+life+for+Moores
 +Law/2009-1006_3-5672485.html?tag=nl
[4] http://research.microsoft.com/users/
 GBell/Computer_Structures_
 Principles_and_Examples/csp0322.htm
[5] Patent pending

