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High Productivity Computing1Design 
Philosophy 
This paper explores the use of the Star-P interactive high 
performance computing system to study and illustrate our 
core beliefs about high productivity computing: 
 

1. High productivity computing can be possible if a 
sufficiently rich set of computational primitives and 
tools are available and used on high performance 
systems. 

2. This set must interoperate with other user defined calls. 
3. They must be available interactively so that 

programmers can explore their use to best advantage. 
 
Of course one further requirement is necessary to achieve 
high performance with high productivity: 
 

4. The primitives and tools must be implemented as high 
performance kernels so many users get the benefit of the 
available speedups.   

 
This is quite different from traditional high performance 
computing which has so very often been a “do it yourself” 
methodology.  In this methodology users hack for 
performance but the benefits are rarely available for 
alternative uses. 
 
 

Combinatorial and Graph Algorithms 
In the context of combinatorial and graph algorithms, we 
wish to offer the programmer such a rich set of primitives 
and tools.  The Star-P system, now a commercial product of 
Interactive Supercomputing, extends MATLAB style 
interactive programming to a high performance machine 
through a backend server [1,2,3,4,5,6]. Our conclusion is 
that this system can offer highly tuned kernels for 
combinatorial and graph algorithms with the above core 
beliefs in mind.  This is far more preferable and practical 
than asking users to learn to obtain speedups from scratch, 
reinventing the wheel each time. 
 
The SSCA Kernel 
To drill down the principles above in this context we have 
implemented the High Productivity Computing System’s 
SSCA#2 graph kernels.  We have found that  
                                                 
 

 
• Graphs are well expressed and stored as a sparse matrix 

data structure. 
• This data structure is more than a nice artifice for 

expressing when and with what strength “i” is connected 
to “j”. 

• We also obtain the expressiveness of data parallel 
operations such as matrix times vector, and collective 
operations on matrices that have such nice combinatorial 
uses. 

• We further obtain the expressiveness of linear algebra 
operations such as sparse eigenvalue routines that are 
important components for visualizing and partitioning 
combinatorial structures.  

 
We chose SSCA#2 in part because of the underlying 
philosophy of the SSCA codes as a whole and our interest 
in graph algorithms in particular.  For readers that may not 
be familiar, The High Productivity Computing Systems 
Program is working on identifying how the promises of 
high performance computing can allow workflows to be 
more productive. (See http://www.highproductivity.org/). 
As part of this program, benchmarks are being created 
intended to abstract the true nature of many high 
performance programs.  The Scalable Synthetic Compact 
Applications [7] are a particularly nice set in that they 
attempt to capture pieces of real applications while 
remaining of a manageable size. 
 
As part of the application, a graph is generated before the 
timing begins.  As a sample of the genre of the graph, as 
well as our interactive tool philosophy, we used the 
eigenvalues of the graph to produce the picture in Figure 1: 
 

 

8192-vertex graph from Kernel 1 plotted with Fiedler coordinates

 
Figure 1:  

 



SSCA#2 consists of a data generator (which generates 
labelled directed edges) and four kernels.  Kernel 1 builds 
the multigraph data structure; Kernel 2 searches the graph 
by edge label; Kernel 3 locates all edges and vertices within 
a specified distance of a set of start vertices; and Kernel 4 
partitions the entire graph into tightly connected clusters 
  
The concise version, cSSCA2 is almost but not quite a full 
implementation of SSCA#2.  The written specification 
includes both integer and string-valued edge labels; 
cSSCA2 implements only integer-valued labels.  We should 
also note that the clustering algorithm used in Kernel 4 of 
cSSCA2 differs significantly from that in the executable 
spec.  The executable spec uses a sequential seed-growing 
method based on Koester [8]; cSSCA2 uses  a spectral 
method based on minimizing cluster isoperimetric numbers. 
 
The Star-P Implementation 
 
We illustrate the expressive power of Star-P by comparing 
the number of lines of executable code (per kernel)  
between the Star-P implementation, the executable spec, 
and Bader and Madduri's C/Pthreads/SIMPLE 
implementation [9].  The direct comparison with the 
executable spec should be taken with a grain of salt: while 
it is also written in serial Matlab, its style   is intended to 
facilitate message-passing parallel   implementation, and of 
it includes more bookkeeping code  (e.g. for string-valued 
edge labels) than cSSCA2.  Nonetheless, we believe that 
the following statistics  are striking.     
 
  Table: Lines of executable code (excluding I/O and 
graphics)                 
 
                cSSCA2 executable spec  C/Pthreads/SIMPLE  
Kernel 1:       29            68                      256   
Kernel 2:       12            44                      121  
Kernel 3:       25            91                      297 
Kernel 4:       44          295                      241 
 
The productivity improvement 
 
The improvement in productivity (as measured by lines of  
code) in cSSCA2 is primarily due to the use of data-parallel  
primitives for expressing sparse graph manipulation in a  
natural way.  For example, Kernel 1 (which converts an 
unordered list of "edge triples"  to a graph represented as a 
cell array of distributed sparse   adjacency matrices) is 
essentially the "sparse" constructor  in Star-P.    Kernel 2 
(which searches for maximum and specific edge   labels) is 
essentially Star-P's "max" and "find" operations on 
distributed arrays.   Kernel 3 (which follows graph paths 
from specific vertices) is implemented by Star-P's 
distributed sparse matrix-vector   multiplication, which is 
extremely concise and reasonably efficient.  An 
implementation (in progress) using distributed   sparse 
vectors as well as dsparse matrices will increase its   
efficiency.    Kernel 4 (which finds clusters) uses Star-P's 
built-in   eigenvalue/eigenvector primitives, which calls the 

PARPACK library, and performs an isoperimetric 
computation in an  efficient data-parallel style. 
 
We timed Kernel 1 on a four processer linux cluster and 
found that we were approaching  the asymptotic regime of 
speedup.  The actual timings were 6, 8, 15, and 29 seconds 
for problems of size 215, 216, 217, and 218 respectively.  We 
will be running much larger problems in the near future on 
bigger machines, but these timings already confirm the 
benefits of the approach.  More important than the timings 
are the benefits to productivity. 
 
In conclusion, by expressing parallel algorithms for 
combinatorial problems using sparse matrix primitives, we 
illustrate the productivity gains as measured by lines of 
code.  The raising of the level of abstraction allows library 
writers or commercial vendors to accelerate the primitives 
for the benefit of not just one implementer but for a large 
class of users.  This is the scalability that we should strive 
for. 
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