
 An Interactive Approach to
 Parallel Combinatorial Algorithms

with Star-P

John Gilbert and Viral Shah
University of California,
Santa Barbara
gilbert@cs.ucsb.edu and
viral@cs.ucsb.edu

Todd Letsche and Steven Reinhardt
SGI
 letsche@sgi.com, and
spr@sgi.com

Alan Edelman
Massachusetts Institute of Technology
and Interactive Supercomputing:
edelman@math.mit.edu and
edelman@interactivesupercomputing.com

High Productivity Computing1Design
Philosophy
This paper explores the use of the Star-P interactive high
performance computing system to study and illustrate our
core beliefs about high productivity computing:

1. High productivity computing can be possible if a
sufficiently rich set of computational primitives and
tools are available and used on high performance
systems.

2. This set must interoperate with other user defined calls.
3. They must be available interactively so that

programmers can explore their use to best advantage.

Of course one further requirement is necessary to achieve
high performance with high productivity:

4. The primitives and tools must be implemented as high
performance kernels so many users get the benefit of the
available speedups.

This is quite different from traditional high performance
computing which has so very often been a “do it yourself”
methodology. In this methodology users hack for
performance but the benefits are rarely available for
alternative uses.

Combinatorial and Graph Algorithms
In the context of combinatorial and graph algorithms, we
wish to offer the programmer such a rich set of primitives
and tools. The Star-P system, now a commercial product of
Interactive Supercomputing, extends MATLAB style
interactive programming to a high performance machine
through a backend server [1,2,3,4,5,6]. Our conclusion is
that this system can offer highly tuned kernels for
combinatorial and graph algorithms with the above core
beliefs in mind. This is far more preferable and practical
than asking users to learn to obtain speedups from scratch,
reinventing the wheel each time.

The SSCA Kernel
To drill down the principles above in this context we have
implemented the High Productivity Computing System’s
SSCA#2 graph kernels. We have found that

• Graphs are well expressed and stored as a sparse matrix

data structure.
• This data structure is more than a nice artifice for

expressing when and with what strength “i” is connected
to “j”.

• We also obtain the expressiveness of data parallel
operations such as matrix times vector, and collective
operations on matrices that have such nice combinatorial
uses.

• We further obtain the expressiveness of linear algebra
operations such as sparse eigenvalue routines that are
important components for visualizing and partitioning
combinatorial structures.

We chose SSCA#2 in part because of the underlying
philosophy of the SSCA codes as a whole and our interest
in graph algorithms in particular. For readers that may not
be familiar, The High Productivity Computing Systems
Program is working on identifying how the promises of
high performance computing can allow workflows to be
more productive. (See http://www.highproductivity.org/).
As part of this program, benchmarks are being created
intended to abstract the true nature of many high
performance programs. The Scalable Synthetic Compact
Applications [7] are a particularly nice set in that they
attempt to capture pieces of real applications while
remaining of a manageable size.

As part of the application, a graph is generated before the
timing begins. As a sample of the genre of the graph, as
well as our interactive tool philosophy, we used the
eigenvalues of the graph to produce the picture in Figure 1:

8192-vertex graph from Kernel 1 plotted with Fiedler coordinates

Figure 1:

SSCA#2 consists of a data generator (which generates
labelled directed edges) and four kernels. Kernel 1 builds
the multigraph data structure; Kernel 2 searches the graph
by edge label; Kernel 3 locates all edges and vertices within
a specified distance of a set of start vertices; and Kernel 4
partitions the entire graph into tightly connected clusters

The concise version, cSSCA2 is almost but not quite a full
implementation of SSCA#2. The written specification
includes both integer and string-valued edge labels;
cSSCA2 implements only integer-valued labels. We should
also note that the clustering algorithm used in Kernel 4 of
cSSCA2 differs significantly from that in the executable
spec. The executable spec uses a sequential seed-growing
method based on Koester [8]; cSSCA2 uses a spectral
method based on minimizing cluster isoperimetric numbers.

The Star-P Implementation

We illustrate the expressive power of Star-P by comparing
the number of lines of executable code (per kernel)
between the Star-P implementation, the executable spec,
and Bader and Madduri's C/Pthreads/SIMPLE
implementation [9]. The direct comparison with the
executable spec should be taken with a grain of salt: while
it is also written in serial Matlab, its style is intended to
facilitate message-passing parallel implementation, and of
it includes more bookkeeping code (e.g. for string-valued
edge labels) than cSSCA2. Nonetheless, we believe that
the following statistics are striking.

 Table: Lines of executable code (excluding I/O and
graphics)

 cSSCA2 executable spec C/Pthreads/SIMPLE
Kernel 1: 29 68 256
Kernel 2: 12 44 121
Kernel 3: 25 91 297
Kernel 4: 44 295 241

The productivity improvement

The improvement in productivity (as measured by lines of
code) in cSSCA2 is primarily due to the use of data-parallel
primitives for expressing sparse graph manipulation in a
natural way. For example, Kernel 1 (which converts an
unordered list of "edge triples" to a graph represented as a
cell array of distributed sparse adjacency matrices) is
essentially the "sparse" constructor in Star-P. Kernel 2
(which searches for maximum and specific edge labels) is
essentially Star-P's "max" and "find" operations on
distributed arrays. Kernel 3 (which follows graph paths
from specific vertices) is implemented by Star-P's
distributed sparse matrix-vector multiplication, which is
extremely concise and reasonably efficient. An
implementation (in progress) using distributed sparse
vectors as well as dsparse matrices will increase its
efficiency. Kernel 4 (which finds clusters) uses Star-P's
built-in eigenvalue/eigenvector primitives, which calls the

PARPACK library, and performs an isoperimetric
computation in an efficient data-parallel style.

We timed Kernel 1 on a four processer linux cluster and
found that we were approaching the asymptotic regime of
speedup. The actual timings were 6, 8, 15, and 29 seconds
for problems of size 215, 216, 217, and 218 respectively. We
will be running much larger problems in the near future on
bigger machines, but these timings already confirm the
benefits of the approach. More important than the timings
are the benefits to productivity.

In conclusion, by expressing parallel algorithms for
combinatorial problems using sparse matrix primitives, we
illustrate the productivity gains as measured by lines of
code. The raising of the level of abstraction allows library
writers or commercial vendors to accelerate the primitives
for the benefit of not just one implementer but for a large
class of users. This is the scalability that we should strive
for.

References.
[1] R. Choy and A. Edelman, “Parallel MATLAB doing it right,”

Proceedings of the IEEE, Vol.93, No.2, Feb 2005, pages 331-
341.

[2] R. Choy, MATLAB*p 2.0, Interactive Supercomputing Made
Practical, M. Science Thesis, Massachusetts Institute of
Technology, Cambridge, 2002.

[3] P. Husbands and C. Isbell, “The Parallel Problems Server: A
Client-Server Model for Large Scale Scientific
Computation.” Proceedings of the Third International
Conference on Vector and Parallel Processing. Portugal,
1998.

[4] P. Husbands, Interactive Supercomputing,, PhD Thesis,
Massachusetts Institute of Technology, Cambridge, 1999.

[5] A Edelman, P. Husbands, and C. Isbell, What is MIT
MATLAB? http://citeseer.ist.psu.edu/333211.html, 1998.

[6] R. Choy and A. Edelman, “Solving Multiple Classes of
Problems in Parallel with MATLAB*P,” Proceedings of the
2004 SINGAPORE MIT Alliance, available on dspace:
https://dspace.mit.edu/handle/1721.1/3874

[7] http://www.highproductivity.org/SSCABmks.htm

[8] D. Koester, “Parallel Block-Diagonal-Bordered Sparse Linear
Solvers for Power Systems Applications,” PhD Thesis,
Syracuse Unversity, Syracuse, New York.
http://www.npac.syr.edu/techreports/hypertext/sccs-745/

[9] D. Bader and K. Madduri, “SSCA#2 graph theory: C/pthreads
implementation using shared memory”
http://www.highproductivity.org/SSCABmks.htm

