
Mitigating the risks facing large-
scale computational science.

Douglass E. Post
post@ieee.org

Chief Scientist:
DoD High Performance Computing Modernization Program

Acknowledgements: R.P.Kendall, J. Grosh, L.G.Votta

High Performance Embedded Software Conference
Lexington, MA Sept. 21, 2005

September 20, 2005 HPEC 2

Computational Science and Engineering can
transform DoD warfighting technologies.

• To meet its evolving mission, the DoD must respond
quickly to a rapidly changing world

• It must design and procure better weapons faster and
cheaper

• A weapon project must have consistent requirements,
schedules and resources (the iron triangle)

• Existing projects utilize:
– Engineering design,
– Theoretical analysis (including some computing) and
– Experimental testing

• Breaking the iron triangle requires a new problem
solving methodology

• Computational science and engineering using high
performance computing offers the promise of such a
new and very powerful methodology

• Definition: A high performance computing
application is one that exploits a significant
fraction of the most powerful computers today.

requirements

resources

schedule

September 20, 2005 HPEC 3

Computational Science and Engineering
can improve the process.

• Conventional system acquisition process
– Initial design developed with engineering tools
– Prototypes built and tested (e.g.wind tunnel)
– Full system built and tested (e.g. flight tests)
– Full Production

• Problems discovered in testing often require major re-design, resulting
in schedule delays, degraded performance and increased costs (F-18,
F-22, …)

DesignRequirements Prototype Test Full system Test Production

• HPC Tools Aided System acquisition process (e.g.
Computational Fluid Dynamics, Structural Mechanics, etc.)

– Initial design developed with aid of HPC tools
• Improved design optimization, greater exploration of design options,

edge-of-envelope operations
– Prototypes built and tested (e.g.wind tunnel)

• Testing process more effective
– Full system built and tested (e.g. flight tests)

• Fewer full system tests needed
– Full Production

• Fewer problems discovered in testing that require major re-design,
fewer schedule delays, less performance degradation and lower costs

Ideal Plan

Reality

F-117
50% increase required

for tailfin

September 20, 2005 HPEC 4

Important DoD Problems are being addressed
with high performance computing applications.

Basic Research
Simulating High-Energy

Density Rocket Fuels

Basic ResearchBasic Research
Simulating HighSimulating High--Energy Energy

Density Rocket FuelsDensity Rocket Fuels

Developmental T&E
Support of Aircraft-Store

Compatibility and Weapons
Integration

Developmental T&EDevelopmental T&E
Support of AircraftSupport of Aircraft--Store Store

Compatibility and Weapons Compatibility and Weapons
IntegrationIntegration

Advanced Technology
Armor and Projectile Design

Advanced TechnologyAdvanced Technology
Armor and Projectile DesignArmor and Projectile Design

Intelligence
Radar Cross-Sections Predictions

IntelligenceIntelligence
Radar CrossRadar Cross--Sections PredictionsSections Predictions

Operations
Ocean/wave forecasting

OperationsOperations
Ocean/wave forecastingOcean/wave forecasting

- J. Grosh

September 20, 2005 HPEC 5

Next generation of computers can enable a “transformational change” in DoD
design and testing methodologies to break the “iron triangle”

• We will be able to:
– Achieve adequate spatial and temporal resolution
– Develop and employ more accurate models
– Include a more complete set of models
– Model a complete system

• If we can meet the development challenge (DARPA HPCS emphasis!)

Estimated DARPA HPCS System and the largest HPCMP System
assuming normal rates of technology improvement

1,000,000,00
0

1-4

30-70k, up to
1M

Up to 6
4+

DARPA HPCS
System (2010)

6,000
~0.05

~10k
0.05
0.2

Evolving HPCMP
Systems (2010)

1Approximate measure of maximum
increased capability (speed x

bandwidth x memory)

0.008Memory PBytes

4kProcessor count

0.0005Bandwidth (PetaBytes/s)

0.02PetaFlops/s (Linpack Top 500)

Present HPCMP
Systems (2006)

Capability

September 20, 2005 HPEC 6

Computational Science and
Engineering has Four Major Elements.

Users make
connections to

customers

Inadequate
methods, need
paradigm shift

Greatest
bottleneck

Need to reduce
programming

challenge

Use tools to
solve

problems, do
designs, make

discoveries

Harder due to
inclusion of
more effects

and more
complicated

models

More
complicated

models +larger
programming
challenges

Making
enormous

progress but at
cost of

complexity

UsersV&VCodesComputers

Sponsors

September 20, 2005 HPEC 7

Code Development will be the
major bottleneck in the future

• Codes need to scale to many thousands of
processors

• Low-hanging fruit has been gathered (porting of serial
codes to parallel computers)

• Opportunities:
– Better spatial and temporal resolution
– More accurate models
– Inclusion of a more complete set of effects
– Codes that can address whole system

• Greatest opportunities are for integrated codes that
couple many multi-scale effects to model a complete
system

• Success requires large (10 to 30 professionals)
teams and 5 to 10 years of development time

September 20, 2005 HPEC 8

Requirements for computers and computer science strongly
influenced by code project life cycle and workflows.

Formulate
Questions
and Issues

Develop
Computational

Approach

Develop
Code V&V

Production
Runs

Time line to solution Iterate

Make
Decisions,
Develop

Hypotheses

Analyze
Results

Case study of Falcon Code Project

Tasks for developing a computational solution

September 20, 2005 HPEC 9

Computational Science making the same transitions that
experimental science made in 1930 through 1960.

• Computational science moving from “few-effect” codes developed by small teams (1
to 3 scientists) to “many-effect” codes developed by larger teams (10, 20 or more).

• Analogous to transition that experimental science made in 1930-1960 time frame
from small-scale science experiments involving a few scientists in small laboratories
to “big science” experiments with large teams working on very large facilities.

• “Big Science” experiments require greater attention to formality of processes, project
management issues, and coordination of team activities than small-scale science.

• Experimentalists were better equipped than most computational scientists to make
the transition and they had more time to make the transition.

– Small scale experiments require much more interaction with the outside world than small-
scale code development.

– Experimentalists had ~20 years, while computational scientists are doing the transition
much more quickly.

Early 1930’s Late 1930’s CERN 2000

September 20, 2005 HPEC 10

It’s risky. Software failures are
not just in the IT industry.

• While software failures are commonly acknowledged in the IT industry*,
not much is heard about them in the technical HPC community.

• But they exist.

*Ewusi-Mensah, K., Software Development Failures: Anatomy of Abandoned
Projects. 2003, Cambridge, Massachusetts: MIT Press: Glass, R.L.,
Software Runaways: Monumental Software Disasters. 1998, New York:
Prentice Hall PTR.

1996 1997 1998 1999 2000 2001

Program
planning
and start

Program Milestones set

New Code Projects
Launched

1st 2nd 3rd

1992 — 1995

Hawk Code Project

Kite Code Project

Jabiru Code Project

Egret Code Project

Gull Code Project

Finch Code Project

M
issed M

ilestones
M

ilestone successes
Six Large Code Project Schedule

Project start

Milestones

Project successes —
2004

Project W
ork

C
eased

2004

Large scale code development is risky.

September 20, 2005 HPEC 12

Falcon project had turbulent beginning
largely due to initial requirements.

Formulate
questions

Develop
Approach

Develop
Code

V&V Analyze
Results

Production
Runs

Decide;
Hypothesize

Define
Goals

Set global
Requirements

Identify
Customers

Define
General

Approach

Customer
input

Identify
algorithms

Detailed
Design

Recruit
Team

Detailed
Goals

Computing
environment

Select
Programming

Model

Write
Component

Debug
Component

Test
Component

Define
tests

Regression
Tests

Verification
Tests

Validation
Tests

Validation
Expts.

Identify
Models

Setup
Problems

Schedule
Runs

Execute
Runs

Store
Results

Initial
Analysis

Complete
Run

Optimize
runs

Optimize
Component

Analyze
Run

Identify
Next Run

Computational
Science
Workflow

Formulate
questions

Develop
Approach

Make
Decisions

Document
Decisions

Identify
Uncertainties

Identify
Next Step

Upgrade existing code
or develop new code

Not the WaterFall Model!

1. Requirements
2. Design
3. Code
4. Test
5. Run

September 20, 2005 HPEC 14

How can we succeed?
Case Studies point

the way!
1

2

3

4
• Case studies conducted after each

crash.
• Lessons learned identified and adopted

by community.
• Computational Science is at stage 3.

Tacoma Narrows Bridge buckled
and fell 4 months after construction!

• 4 stages of design maturity for a methodology to
mature—Henry Petroski—Design Paradigms.

• Suspension bridges—case studies of failures
(and successes) were essential for reaching
reliability and credibility.

September 20, 2005 HPEC 15

Comparative case study of six projects with the same
goals and resources identified the “Lessons Learned*”

The projects that were successful emphasized:
• Minimizing risks

– Build on successful code development history and prototypes .
– Invest in better physics and computational mathematics before better computer

science.
– Use modern software engineering and computer science methods; and, do not do

computer science research in a large code project—adds too much risk.
• Sound Software Project Management.

– Highly competent and motivated people in a good team.
– Development of the team.
– Software Project Management: Run the code project like a project.
– Determining the Schedule and resources from the requirements.
– Identifying, managing and mitigating risks.
– Focusing on the customer.

• For code teams and for stakeholder support.
– Software Quality Engineering: Best Practices rather than Processes.

• Verification and Validation
– Need for improved V&V methods became very apparent.

The projects and their institutions that were unsuccessful didn’t emphasize
these sufficiently!

*D.E.Post and R.P.Kendall,
International Journal of High
Performance Computing,
18(2004), pp.399-416.

September 20, 2005 HPEC 16

Verification and Validation
• Customers want to know why they should believe code results.
• Without adequate V&V, they shouldn’t believe the code results.
• Codes are not reality, only a model of reality.
• Verification

– Verify equations are solved correctly.
– Regression suites of test problems, convergence tests, manufactured

solutions, analytic test problems, code comparisons and benchmarks.
• Validation

– Ensure models reflect nature, check code results with experimental data.
– Specific validation experiments are required.

• The agency that funded the Falcon project is funding a large experimental
program to provide validation data.

• Our case studies indicate that a stronger intellectual basis is needed
for V&V.

• More investment is needed in Verification and Validation if
computational science is to be economical and credible.

• DoD testing facilities well suited for validation.
Roach, 1998; Roache, 2002; Salari and Knupp, 2000; Lindl, 1998; Lewis, 1992; Laughliin, 2002)

September 20, 2005 HPEC 17

Summary Conclusions

Few sponsors are
supporting code

development.

Limited by
available codes
and by computer

complexity.

Due to technical
challenges and

long development
schedules, not

enough codes are
being developed.

Successful but at
cost of complexity

Status

Requires foresight,
vision, patience, and

risk.

Whole system
(computer, code, V&V,

production system)
must work

Complexity of
computers and difficulty
of science means that
rapid development and

accurate integration
takes a large team and

many years.

Limits on power,
memory latency, ….

RoadblocksGoal (and risks)Challenge

Sponsor initiates effort
to solve strategic

problem

Senior
Leadership

Engineers and
scientists use the code

to solve problems

Production

Build fast, accurate
codes that can address
the important problems

Codes

Powerful ComputersPerformance

September 20, 2005 HPEC 18

There is a path forward to realize
this opportunity.

• The computer industry, with help from DARPA HPCS and
market forces, is continuing to develop and deliver
increasingly more powerful computers.

• The computer industry, partially due to DARPA HPCS
emphasis on productivity, is beginning to recognize the
necessity of making it easier to develop and run codes, but
much remains to be done.

• The scientific and engineering community needs to identify
the opportunities for high performance computer applications
to solve strategic problems and successfully make a case to
prospective sponsors that computational applications can
make a unique contribution toward solving strategic
problems.

• The sponsors need to provide the resources to develop the
codes, buy and support the computers, and support the V&V
and application of codes.

• The code development community must utilize their
experience (both individual and community from case
studies) and domain knowledge to develop the needed tools.

• Users and developers must verify and validate the codes and
then employ the codes to solve strategic problems.

100 ft. rocks
Sea level

5000 ft. cliffs
el.15,000 ft.

100 processors

105 processors

September 20, 2005 HPEC 19

Issues summarized in January
2005 Physics Today Article*.

• Three Challenges
– Performance Challenge
– Programming Challenge
– Prediction Challenge

• Where case studies are important
• Case Studies are needed for success

– The Scientific Method
• Paradigm shift needed

– Computational Science moving from few
effect codes developed by small teams to
many effect codes developed by large
teams

– Similar to transition made by
experimental science in 1930—1960

– Software Project Management and V&V
need more emphasis

*Computational Science Demands a New Paradigm, D.E.
Post and L.G. Votta, Physics Today,58(1), 2005, p.35-41.

Email post@ieee.org to get a copy.

September 20, 2005 HPEC 63

Summary
• If Computational Science is to fulfill its promise for society, it must become as

mature as theoretical and experimental methodologies.
• Preformance Risk

• Being met, but at expense of complexity which leads to increased programming and
prediction risk

• Programming Risk
• HPC community needs to reduce the difficulty of developing codes for modern

platforms—DARPA HPCS developing new benchmarks, performance measurement
methodologies, encouraging new development tools, etc.

• Prediction Risk
• Mitigation requires learning from past experiences, successes and failures, develop

“lessons learned” and implement them—DARPA HPCS doing case studies of ~ 20
major US code projects (DoD, DOE, NASA, NOAA, academia, industry,…)

• Major lesson is that we need to improve:
•Verification
•Validation
•Software Project Management and Software Quality

For papers and talks send email to post@ieee.org

	Text1:

