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FP Sparse Matrix Vector Multiplication

e Sparse Matrix Vector Product
Ax =y
A: Matrix with very few non-zero elements
x: Vector
y: Result vector
e Used in iterative solvers for linear systems

e Not efficient on general purpose microprocessor systems
High cache miss rate due to poor data locality

Low utilization of floating point units due to high ratio of load/store to floating
point operations
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SpMatVec on FPGAs

e FPGAs

Effectively implement floating point applications
High density can be utilized to implement multiple floating point units

e SRC-6 MAPstation architecture
Local distributed memory banks (six 4 MB banks)
High density FPGAs (Virtex-Il 6000)

High speed host-pp to FPGA communication (peak 1400 MB/s)
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SRC-6 MAPstation

Implicitly Controlled Device
- Dense logic device
- Higher clock rates
- Typically fixed logic
-mP, DSP ASIC, efc.
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Sparse Matrix Storage Format

e CSR - Compressed Sparse Row

e Example:
Non-zero elements: NZ=[1,2,5,4,5, 3, 2,7, 8, 1]
Column Indices: Cl =[1, 3, 2, 5, 1, 4, 2, 4, 3, 5]
Row Pointers: PT =11, 3, 5,7, 9, 11]
Get the Row lengths (RL) from PT

e Other formats:

ELL, JAD, CSRPerm, CCS

avxmall H'C2009  SOUTIGROLNA.

P T T T e e ——————— High Performance Embedded Computing Workshop




Software implementation - SPARSKIT

e Fortran 77 code rewritten in C
e Uses the nested loop structure
e On SRC-6
Dual Intel Xeon at 2.8 GHz

for(i=0;i<nrow;i++){
I/l compute the inner product of row
Il with vector x
t=0.0;
for(k=PT[i];k<PT[i+1];k++)
t =t + NZ[K]*IV[CI[Kk]];
lIstore result in y(i)
OoVI[i]=t;
}
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Basic Architecture of the kernel

NZ[0]
IV[CI[O]]

NZ[1]
IV[CI[1]]

NZ[n-1]

OV[n-1]
IV[CI[n-1]]

NZ[n] .
IV[CI[n]] >

OV[n]

NZ — Non-zero element vector, Cl — Column indices vector,
IV- Input vector, OV- Output vector
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SRC-6 Implementation: 1-Unit

e Written in C Map
e The NZ, CIl, RL, IV, and OV data are stored on the OBM banks

for(i=0;i<nrow;i++){// OV element index
I = CL[i];
for(j=k;j<k+l;j++){
fp_mac_64 (NZ[j], IVICI[j1], j==k+I-1, 1, j==k, &OV[i], &err);

1 Unit Implementation Performance
—eo— Wall Clock Time in ms —s— Hardware Computation Time in ms —a— MFLOPS
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SRC-6 Implementation: 1-Unit Analysis

Random access to memory bank for IV elements

Each read to the OBM has a 4 cycle latency

Random reads to the OBM lead to lot of latency cycles
BRAM read take only 1 cycle

Moving IV to BRAM would reduce the latency

Multiple BRAMSs for storing IV would facilitate parallelism
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Multi-unit (4) Local/Non-Local (LNL) blocks implementation

e Non-duplication of IV

Local — FPGA, Non-local & Sub-
product sum - CPU

Can be run for matrices of size
40000x40000

Cl and RL share a single OBM
bank

e Each shares half — 262144
words

e Limits the number of non
zeroes that can be transferred
at one time

Can look at local on FPGA1 and
non-local on FPGA2, sum on CPU

n rows ?

local z

m IV[CI[0]]
m NZ[1]
m IV[CI[1]]
m NZ[2]
m IV[CI[2]]
| osm |2
m IV[CI[3]]
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Variations/Improvements & Performance

e Multiplier-add instead of MACs
Cycles improvement: 47% for
3600x3600 matrix

e Different ‘for loops’ for each Mul-

add unit

Each Mul-Add runs for a
different length of iterations
Each loop in a different
parallel section

Outer loop moved into each
parallel section

Cycles improvement: 20% for
3600x3600 matrix
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LNL Single Loop (SL) design

The two loop structure is made into a single loop structure
1-unit SL is 3 times faster than 1-unit nested loop design
4-unit LNL-SL is 7.8 times faster than 1-unit design

—e— Wall Clock Time in ms —#— Hardware Compute Time in ms ——g— MFLOPS

for (i=0;i<bank2_length;i++){// row index
temp += BL[i+bl1+n3]*IVec2[ci_bram2[i]-n2];
if (j==12-1){
OVec2[k] = temp;
temp =0;
i=0;
k++;
12 = rl_bram2[k];
}
else
I
}
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NIST Sparse BLAS toolkit implementations

Implement simple Sparse Matrix-Vector multiply written in C code
Sun Sparc 20
IBM RS6000
http://math.nist.gov/spblas/
Preliminary implementations yield a performance of:
17 MFLOPs on Sparc 20
27 MFLOPs on IBM RS6000

Our best implementation has a peak performance of 59 MFLOPs for
small datasets and 46 MFLOPs for larger datasets.
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Analysis - Parallelism

e Parallelism
Obtain 7.8 times improvement over 1-unit by having 4 parallel units

More parallel units can be implemented using the second FPGA

o Four FP units take about 89% of the Virtex-Il 6000 chip including the memory
interface

Limitations:
o Few memory banks — 4 for NZ, 1 for CI&RL, 1 for IV&OV
o Forced to use on-chip BRAMs
e Low On-chip memory capacity — limits the amount of data transferred at a time
o Time to transfer from OBM banks to BRAMs

Multi-FPGA implementations would improve performance
o Need more distributed memory units
e Memory Bandwidth
4.8 GB/s to a single FPGA (all six banks dedicated to one FPGA)
2.4 GB/s each to two FPGAs (3 banks dedicated to each FPGA)

More bandwidth necessary to implement parallel units without using BRAMs
o About 9.6 GB/s for obtaining the 4 values of NZ, Cl, & IV in parallel
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Larger datasets and other architectures

Streaming of the data arrays
Output Stream is possible in Carte 2.0

_ Pipelined
| Stream input ——> D:tapath —»{ Stream output|

Parallel DMA and Computation sections

Would overlap/hide the computation sections over the DMAs
Multi-FPGA implementations

partition large dataset into multiple smaller ones
Other architectures and storage formats:

Zhou, et. al. (FPGA 2005) look at tree based structure
o k multipliers, k-1 adders, tree structure
o CSRPerm — variant of CSR
DeHon et. al.’s (FPGA 2005) architecture.
e Multi-FPGA implementation
o Simple mul+add datapath per PE
« Bidirectional ring for communication
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Current Status & Lessons Learned

e Current Status:

4-unit, single loop implementation performance is still about 2-2.55 times
slower than software

More parallel units
o Need multiple FPGAs and distributed memory banks

e Lessons Learned:
SRC-6 provides moderate performance for SpMatVec multiplication operation

Need better data transfer mechanism
o Data transfer time is more than the total software operation time
o Hide data transfer behind computation
FPGAs can perform floating-point operations fast if:
e Feed data at high bandwidth
e Have many parallel floating point units
o Need more memory units for parallelism
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Future Work

Parallel DMA/computation sections

Combining transfer of NZ, Cl and IV, RL to achieve maximum DMA transfer
bandwidth

Multi-FPGA Implementations to extract more parallelism
Other Architectures and different storage formats

Cray XD1 architecture
2 Dual Opterons & 1 Virtex-Il Pro FPGA per blade
Four 36-bit word QDR-Il SRAMs per FPGA
3.2 GB/s data transfer between host and FPGAs
Six FPGAs per chassis suitable for Multi-FPGA implementation

SRC-7 coming out in 15t quarter of next year

Two 30 MGates user logic chips/One 30 MGates and One Field programmable FP
device
e DP-30 GFLOPs
e SP-60 GFLOPs
Ten 64-bit word SRAMs on board
Two I/P and two O/P streaming capability
14.4 GB/s data transfer between host and FPGAs
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