
11/8/2005

Sparse Matrix Vector Multiplication on the
SRC MAPstation

Sreesa Akella
Computer Science and Engineering

University of South Carolina

Melissa C. Smith, Richard T. Mills,
Sadaf R. Alam, Richard F. Barrett,

Jeffrey S. Vetter
Oak Ridge National Laboratory

2

Outline

Introduction
Software implementation
SRC implementations
Analysis
Other architectures
Current Status
Future work

3

FP Sparse Matrix Vector Multiplication

Sparse Matrix Vector Product
Ax = y
A: Matrix with very few non-zero elements
x: Vector
y: Result vector

Used in iterative solvers for linear systems
Not efficient on general purpose microprocessor systems

High cache miss rate due to poor data locality
Low utilization of floating point units due to high ratio of load/store to floating
point operations

4

SpMatVec on FPGAs

FPGAs
Effectively implement floating point applications
High density can be utilized to implement multiple floating point units

SRC-6 MAPstation architecture
Local distributed memory banks (six 4 MB banks)
High density FPGAs (Virtex-II 6000)
High speed host-μp to FPGA communication (peak 1400 MB/s)

5

SRC-6 MAPstation

6

Sparse Matrix Storage Format

CSR – Compressed Sparse Row
Example:

Non-zero elements: NZ = [1, 2, 5, 4, 5, 3, 2, 7, 8, 1]
Column Indices: CI =[1, 3, 2, 5, 1, 4, 2, 4, 3, 5]
Row Pointers: PT = [1, 3, 5, 7, 9, 11]
Get the Row lengths (RL) from PT

Other formats:
ELL, JAD, CSRPerm, CCS

1 0 2 0 0

0

5

0

0

5

0

2

0

0

0

0

8

0

3

7

0

4

0

0

1

7

Software implementation - SPARSKIT

Fortran 77 code rewritten in C
Uses the nested loop structure
On SRC-6

Dual Intel Xeon at 2.8 GHz

for(i=0;i<nrow;i++){
// compute the inner product of row
// with vector x
t = 0.0;
for(k=PT[i];k<PT[i+1];k++)

t = t + NZ[k]*IV[CI[k]];
//store result in y(i)
OV[i] = t;

}

Software Performance

0

20

40

60

80

100

120

140

160

1132
8

1658
8

2284
8

3010
8

3836
8

4762
8

5788
8

6914
8

8140
8

9466
8

1089
28

1241
88

1404
48

1577
08

1759
68

1952
28

Number of Non-zero elements

M
FL

O
PS

0

0.5

1

1.5

2

2.5

3

3.5

Ti
m

e
in

 m
s

MFLOPS Time in ms

8

MAC

MAC

MAC

MAC

.

.

NZ[0]

NZ[1]

NZ[n-1]

NZ[n]

IV[CI[0]]

IV[CI[1]]

IV[CI[n-1]]

IV[CI[n]]

OV[0]

OV[1]

OV[n-1]

OV[n]

NZ – Non-zero element vector, CI – Column indices vector,
IV- Input vector, OV- Output vector

Basic Architecture of the kernel

9

SRC-6 Implementation: 1-Unit

Written in C Map
The NZ, CI, RL, IV, and OV data are stored on the OBM banks

for(i=0;i<nrow;i++){// OV element index
l = CL[i];
for(j=k;j<k+l;j++){

fp_mac_64 (NZ[j], IV[CI[j]], j==k+l-1, 1, j==k, &OV[i], &err);
}
k = k + l;

}
1 Unit Implementation Performance

0
10
20
30
40
50
60
70
80

11
32

8
16

58
8

22
84

8
30

10
8

38
36

8
47

62
8

57
88

8
69

14
8

81
40

8
94

66
8

10
89

28
12

41
88

14
04

48
15

77
08

17
59

68
19

52
28

Number of non-zero elements

Ti
m

e(
m

s)

5.96
5.98
6
6.02
6.04
6.06
6.08
6.1

M
FL

O
PS

Wall Clock Time in ms Hardware Computation Time in ms MFLOPS

10

SRC-6 Implementation: 1-Unit Analysis

Random access to memory bank for IV elements
Each read to the OBM has a 4 cycle latency
Random reads to the OBM lead to lot of latency cycles
BRAM read take only 1 cycle
Moving IV to BRAM would reduce the latency
Multiple BRAMs for storing IV would facilitate parallelism

11

Multi-unit (4) Local/Non-Local (LNL) blocks implementation

n rows n rows

local

Non-duplication of IV
Local – FPGA, Non-local & Sub-
product sum - CPU
Can be run for matrices of size
40000x40000
CI and RL share a single OBM
bank

Each shares half – 262144
words
Limits the number of non
zeroes that can be transferred
at one time

Can look at local on FPGA1 and
non-local on FPGA2, sum on CPU

IV[CI[0]]

OV[1]

OV[2]

OV[3]
BR

NZ[3]

NZ[2]

NZ[1]

MAC

MAC

MAC

MAC

NZ[0]

IV[CI[1]]

IV[CI[2]]

IV[CI[3]]

OV[0]OBM

BR

OBM

BR

BR

BR

BR

BR

BR

OBM

OBM

12

Variations/Improvements & Performance

Multiplier-add instead of MACs
Cycles improvement: 47% for
3600x3600 matrix

Different ‘for loops’ for each Mul-
add unit

Each Mul-Add runs for a
different length of iterations
Each loop in a different
parallel section
Outer loop moved into each
parallel section
Cycles improvement: 20% for
3600x3600 matrix

Multiunit(4) Implementation Performance

0

5

10

15

20

25

30

35

40

11
32

8
16

58
8

22
84

8
30

10
8

38
36

8
47

62
8

57
88

8
69

14
8

81
40

8
94

66
8

10
89

28
12

41
88

14
04

48
15

77
08

17
59

68
19

52
28

Number of non-zero elements

Wall Clock Time in ms Hardware Compute Time in ms MFLOPS

13

LNL Single Loop (SL) design

The two loop structure is made into a single loop structure
1-unit SL is 3 times faster than 1-unit nested loop design
4-unit LNL-SL is 7.8 times faster than 1-unit design

for (i=0;i<bank2_length;i++){// row index
temp += BL[i+bl1+n3]*IVec2[ci_bram2[i]-n2];
if (j==l2-1){

OVec2[k] = temp;
temp = 0;
j = 0;
k++;
l2 = rl_bram2[k];

}
else

j++;
}

LNL(4)-SL Implementation Performance

0

10

20

30

40

50

60

70

11
32

8
16

58
8

22
84

8
30

10
8

38
36

8
47

62
8

57
88

8
69

14
8

81
40

8
94

66
8

10
89

28
12

41
88

14
04

48
15

77
08

17
59

68
19

52
28

Number of Non-zero elements

Wall Clock Time in ms Hardware Compute Time in ms MFLOPS

14

NIST Sparse BLAS toolkit implementations

Implement simple Sparse Matrix-Vector multiply written in C code
Sun Sparc 20
IBM RS6000
http://math.nist.gov/spblas/

Preliminary implementations yield a performance of:
17 MFLOPs on Sparc 20
27 MFLOPs on IBM RS6000

Our best implementation has a peak performance of 59 MFLOPs for
small datasets and 46 MFLOPs for larger datasets.

15

Analysis - Parallelism

Parallelism
Obtain 7.8 times improvement over 1-unit by having 4 parallel units
More parallel units can be implemented using the second FPGA

Four FP units take about 89% of the Virtex-II 6000 chip including the memory
interface

Limitations:
Few memory banks – 4 for NZ, 1 for CI&RL, 1 for IV&OV
Forced to use on-chip BRAMs
Low On-chip memory capacity – limits the amount of data transferred at a time
Time to transfer from OBM banks to BRAMs

Multi-FPGA implementations would improve performance
Need more distributed memory units

Memory Bandwidth
4.8 GB/s to a single FPGA (all six banks dedicated to one FPGA)
2.4 GB/s each to two FPGAs (3 banks dedicated to each FPGA)
More bandwidth necessary to implement parallel units without using BRAMs

About 9.6 GB/s for obtaining the 4 values of NZ, CI, & IV in parallel

16

Streaming of the data arrays
Output Stream is possible in Carte 2.0

Parallel DMA and Computation sections
Would overlap/hide the computation sections over the DMAs

Multi-FPGA implementations
partition large dataset into multiple smaller ones

Other architectures and storage formats:
Zhou, et. al. (FPGA 2005) look at tree based structure

k multipliers, k-1 adders, tree structure
CSRPerm – variant of CSR

DeHon et. al.’s (FPGA 2005) architecture.
Multi-FPGA implementation
Simple mul+add datapath per PE
Bidirectional ring for communication

Larger datasets and other architectures

Pipelined
Datapath Stream outputStream input

17

Current Status & Lessons Learned

Current Status:
4-unit, single loop implementation performance is still about 2-2.55 times
slower than software
More parallel units

Need multiple FPGAs and distributed memory banks

Lessons Learned:
SRC-6 provides moderate performance for SpMatVec multiplication operation
Need better data transfer mechanism

Data transfer time is more than the total software operation time
Hide data transfer behind computation

FPGAs can perform floating-point operations fast if:
Feed data at high bandwidth
Have many parallel floating point units
Need more memory units for parallelism

18

Future Work

Parallel DMA/computation sections
Combining transfer of NZ, CI and IV, RL to achieve maximum DMA transfer
bandwidth
Multi-FPGA Implementations to extract more parallelism
Other Architectures and different storage formats
Cray XD1 architecture

2 Dual Opterons & 1 Virtex-II Pro FPGA per blade
Four 36-bit word QDR-II SRAMs per FPGA
3.2 GB/s data transfer between host and FPGAs
Six FPGAs per chassis suitable for Multi-FPGA implementation

SRC-7 coming out in 1st quarter of next year
Two 30 MGates user logic chips/One 30 MGates and One Field programmable FP
device

DP - 30 GFLOPs
SP - 60 GFLOPs

Ten 64-bit word SRAMs on board
Two I/P and two O/P streaming capability
14.4 GB/s data transfer between host and FPGAs

