Sparse Matrix Vector Multiplication on the
SRC MAPstation

Sreesa Akella Melissa C. Smith, Richard T. Mills,
Computer Science and Engineering Sadaf R. Alam, Richard F. Barrett,

. . . Jeffrey S. Vetter
U ty of South Carol
niversity ot sou arofina Oak Ridge National Laboratory

ol 1005 simpron

OAR RiDoEMAaTtonarL Lanorsrome High Performance Embedded Computing Workshop

Outline

Introduction

Software implementation
SRC implementations
Analysis

Other architectures
Current Status

Future work

<ommel H 7000 oOumiocRor
High Performance Embedded Computing Workshop mm]_lcm:)um

WA RS FRRIT S E AT I A T T oo B FR Ar T OO E

FP Sparse Matrix Vector Multiplication

e Sparse Matrix Vector Product
Ax =y
A: Matrix with very few non-zero elements
x: Vector
y: Result vector
e Used in iterative solvers for linear systems

e Not efficient on general purpose microprocessor systems
High cache miss rate due to poor data locality

Low utilization of floating point units due to high ratio of load/store to floating
point operations

avm—wmall H 2000 sOGURIGROLNA.

e T R — p———————— e ———————— High Performance Embedded Computing Workshop

SpMatVec on FPGAs

e FPGAs

Effectively implement floating point applications
High density can be utilized to implement multiple floating point units

e SRC-6 MAPstation architecture
Local distributed memory banks (six 4 MB banks)
High density FPGAs (Virtex-Il 6000)

High speed host-pp to FPGA communication (peak 1400 MB/s)

avm—wmall H 2000 sOGURIGROLNA.

e T R — p———————— e ———————— High Performance Embedded Computing Workshop

SRC-6 MAPstation

Implicitly Controlled Device
- Dense logic device
- Higher clock rates
- Typically fixed logic
-mP, DSP ASIC, efc.

Fortran ! Carte™ Programming Environment <~ C

Explicitly Controlled Device
- Direct execution logic
- Lower clock rates
~ Typically reconfigurable

Implicit Explicit
Device Device

_FPGA, CPLD, OPLD, ete.

Memory
Control

0
Bridge

Unified Executable

To SNAP or Hi-Bar Switch

Controller

I

=X Banks
Dual -ported
On-Board Memory
(24 MB)

‘[Bridge Port 1

Uiser Logic 1 User Logic M
Dual-ported
Wemory

{4 MBj

f—1f——f4[

avxmall H'C2009 SOUTIGROLNA.

WA RS FRRIT S E AT I A T T oo B FR Ar T OO E

High Performance Embedded Computing Workshop

Sparse Matrix Storage Format

e CSR - Compressed Sparse Row

e Example:
Non-zero elements: NZ=[1,2,5,4,5, 3, 2,7, 8, 1]
Column Indices: Cl =[1, 3, 2, 5, 1, 4, 2, 4, 3, 5]
Row Pointers: PT =11, 3, 5,7, 9, 11]
Get the Row lengths (RL) from PT

e Other formats:

ELL, JAD, CSRPerm, CCS

avxmall H'C2009 SOUTIGROLNA.

P T T T e e ——————— High Performance Embedded Computing Workshop

Software implementation - SPARSKIT

e Fortran 77 code rewritten in C
e Uses the nested loop structure
e On SRC-6
Dual Intel Xeon at 2.8 GHz

for(i=0;i<nrow;i++){
I/l compute the inner product of row
Il with vector x
t=0.0;
for(k=PT[i];k<PT[i+1];k++)
t =t + NZ[K]*IV[CI[Kk]];
lIstore result in y(i)
OoVI[i]=t;
}

avm—wmall H 2000 sOGURIGROLNA.

e T R — p———————— e ———————— High Performance Embedded Computing Workshop

Basic Architecture of the kernel

NZ[0]
IV[CI[O]]

NZ[1]
IV[CI[1]]

NZ[n-1]

OV[n-1]
IV[CI[n-1]]

NZ[n] .
IV[CI[n]] >

OV[n]

NZ — Non-zero element vector, Cl — Column indices vector,
IV- Input vector, OV- Output vector

avm—wmall H 2000 sOGURIGROLNA.

e T R — p———————— e ———————— High Performance Embedded Computing Workshop

SRC-6 Implementation: 1-Unit

e Written in C Map
e The NZ, CIl, RL, IV, and OV data are stored on the OBM banks

for(i=0;i<nrow;i++){// OV element index
I = CL[i];
for(j=k;j<k+l;j++){
fp_mac_64 (NZ[j], IVICI[j1], j==k+I-1, 1, j==k, &OV[i], &err);

1 Unit Implementation Performance
—eo— Wall Clock Time in ms —s— Hardware Computation Time in ms —a— MFLOPS

avmwall H'TC2000 SOUTICAROLINA.

B T R e ———— High Performance Embedded Computing Workshop

SRC-6 Implementation: 1-Unit Analysis

Random access to memory bank for IV elements

Each read to the OBM has a 4 cycle latency

Random reads to the OBM lead to lot of latency cycles
BRAM read take only 1 cycle

Moving IV to BRAM would reduce the latency

Multiple BRAMSs for storing IV would facilitate parallelism

avxmall H ' C2009 SOUTIGROLNA.

P T T T e e ——————— High Performance Embedded Computing Workshop

11

Multi-unit (4) Local/Non-Local (LNL) blocks implementation

e Non-duplication of IV

Local — FPGA, Non-local & Sub-
product sum - CPU

Can be run for matrices of size
40000x40000

Cl and RL share a single OBM
bank

e Each shares half — 262144
words

e Limits the number of non
zeroes that can be transferred
at one time

Can look at local on FPGA1 and
non-local on FPGA2, sum on CPU

n rows ?

local z

m IV[CI[0]]
m NZ[1]
m IV[CI[1]]
m NZ[2]
m IV[CI[2]]
| osm |2
m IV[CI[3]]

aom—mel H 7000 s50m (AROLINA.

WA RS FRRIT S E AT I A T T oo B FR Ar T OO E

High Performance Embedded Computing Workshop

Variations/Improvements & Performance

e Multiplier-add instead of MACs
Cycles improvement: 47% for
3600x3600 matrix

e Different ‘for loops’ for each Mul-

add unit

Each Mul-Add runs for a
different length of iterations
Each loop in a different
parallel section

Outer loop moved into each
parallel section

Cycles improvement: 20% for
3600x3600 matrix

avm—wmall H 2000 sOURIGROLNA.

B T R e ———— High Performance Embedded Computing Workshop

LNL Single Loop (SL) design

The two loop structure is made into a single loop structure
1-unit SL is 3 times faster than 1-unit nested loop design
4-unit LNL-SL is 7.8 times faster than 1-unit design

—e— Wall Clock Time in ms —#— Hardware Compute Time in ms ——g— MFLOPS

for (i=0;i<bank2_length;i++){// row index
temp += BL[i+bl1+n3]*IVec2[ci_bram2[i]-n2];
if (j==12-1){
OVec2[k] = temp;
temp =0;
i=0;
k++;
12 = rl_bram2[k];
}
else
I
}

avmxwall H'TC2000 SOUTICAROLINA.

B T R e ———— High Performance Embedded Computing Workshop

NIST Sparse BLAS toolkit implementations

Implement simple Sparse Matrix-Vector multiply written in C code
Sun Sparc 20
IBM RS6000
http://math.nist.gov/spblas/
Preliminary implementations yield a performance of:
17 MFLOPs on Sparc 20
27 MFLOPs on IBM RS6000

Our best implementation has a peak performance of 59 MFLOPs for
small datasets and 46 MFLOPs for larger datasets.

«avmwmall HITC2009 SOUTICAROLINA.

e T R — p———————— e ———————— High Performance Embedded Computing Workshop

Analysis - Parallelism

e Parallelism
Obtain 7.8 times improvement over 1-unit by having 4 parallel units

More parallel units can be implemented using the second FPGA

o Four FP units take about 89% of the Virtex-Il 6000 chip including the memory
interface

Limitations:
o Few memory banks — 4 for NZ, 1 for CI&RL, 1 for IV&OV
o Forced to use on-chip BRAMs
e Low On-chip memory capacity — limits the amount of data transferred at a time
o Time to transfer from OBM banks to BRAMs

Multi-FPGA implementations would improve performance
o Need more distributed memory units
e Memory Bandwidth
4.8 GB/s to a single FPGA (all six banks dedicated to one FPGA)
2.4 GB/s each to two FPGAs (3 banks dedicated to each FPGA)

More bandwidth necessary to implement parallel units without using BRAMs
o About 9.6 GB/s for obtaining the 4 values of NZ, Cl, & IV in parallel

aom—mel H 7000 s50m (AROLINA.

e T R — p———————— e ———————— High Performance Embedded Computing Workshop

Larger datasets and other architectures

Streaming of the data arrays
Output Stream is possible in Carte 2.0

_ Pipelined
| Stream input ——> D:tapath —»{ Stream output|

Parallel DMA and Computation sections

Would overlap/hide the computation sections over the DMAs
Multi-FPGA implementations

partition large dataset into multiple smaller ones
Other architectures and storage formats:

Zhou, et. al. (FPGA 2005) look at tree based structure
o k multipliers, k-1 adders, tree structure
o CSRPerm — variant of CSR
DeHon et. al.’s (FPGA 2005) architecture.
e Multi-FPGA implementation
o Simple mul+add datapath per PE
« Bidirectional ring for communication

aom—mel H 7000 s50m (AROLINA.

e T R — p———————— e ———————— High Performance Embedded Computing Workshop

Current Status & Lessons Learned

e Current Status:

4-unit, single loop implementation performance is still about 2-2.55 times
slower than software

More parallel units
o Need multiple FPGAs and distributed memory banks

e Lessons Learned:
SRC-6 provides moderate performance for SpMatVec multiplication operation

Need better data transfer mechanism
o Data transfer time is more than the total software operation time
o Hide data transfer behind computation
FPGAs can perform floating-point operations fast if:
e Feed data at high bandwidth
e Have many parallel floating point units
o Need more memory units for parallelism

avm—wmall H 2000 sOURIGROLNA.

e T R — p———————— e ———————— High Performance Embedded Computing Workshop

Future Work

Parallel DMA/computation sections

Combining transfer of NZ, Cl and IV, RL to achieve maximum DMA transfer
bandwidth

Multi-FPGA Implementations to extract more parallelism
Other Architectures and different storage formats

Cray XD1 architecture
2 Dual Opterons & 1 Virtex-Il Pro FPGA per blade
Four 36-bit word QDR-Il SRAMs per FPGA
3.2 GB/s data transfer between host and FPGAs
Six FPGAs per chassis suitable for Multi-FPGA implementation

SRC-7 coming out in 15t quarter of next year

Two 30 MGates user logic chips/One 30 MGates and One Field programmable FP
device
e DP-30 GFLOPs
e SP-60 GFLOPs
Ten 64-bit word SRAMs on board
Two I/P and two O/P streaming capability
14.4 GB/s data transfer between host and FPGAs

avm—wmall H 2000 sOURIGROLNA.

e T R — p———————— e ———————— High Performance Embedded Computing Workshop

