Implementations of Signal Processing
Kernels using Stream Virtual Machine for

Raw Processor

Jinwoo Suh, Stephen P. Crago, Dong-In Kang, and
Janice O. McMahon

University of Southern California

Information Sciences Institute

September 20, 2005

ASI-

Information Sclonces Insiute

1/22

Outline m

m Stream Virtual Machine (SVM) framework
O What is the SVM? Why is it useful?

m Raw processor

m Signal processing kernels implementation results
O Ground Moving Target Indicator (GMTI)
O Matrix multiplication

m Conclusions

ISl

Informerion Sciences Insffute

2/22

Stream Processing m

m Stream processing

O Processes input stream data and generates output stream data
e Ex.: multimedia processing

O Exploits the properties of the stream applications
e Parallelism
® Throughput-oriented

m Stream Virtual Machine (SVM) framework

O Developed by Morphware Forum
e Community supported stream processing framework
O Sponsored by DARPA IPTO
O Academia
O Industry

O Multiple languages
e Streamlt (MIT)
e Extended C (Reservoir Labs)
O Identifies stream data

O Multiple architectures

Raw (MIT)

Smart Memories (Stanford)
TRIPS (Univ. of Texas)

°
°
°
e MONARCH (USC/ISI)

ISl

Informerion Sciences Insffute

3/22

Stream Virtual Machine (SVM) m

m Streams
O Entities that contain an

of a given type Input Input
g yp stream1 stream 2
m Kernels
O Entities that contain a locus of
Kernel « Control
O Consume zero or more input +
streams and produce zero or KernelRun()
more output streams
m Controls Output
O Entities that embody a locus of stream
O Initiate, monitor, and
terminate the execution of
kernels
ISI 7o Definitions from SVM Specification 1.0.1 4/92

Informerion Sciences Insffute

Two Level Approach of SVM m

m High Level Compiler (HLC)

O Parallelism detection, load balancing, coarse-grain scheduling of
stream computations, and memory management for streaming data

m Low Level Compiler (LLC)

O Software pipelining, detailed routing of data items, management of
instruction memory, and interfacing between stream processors and
control processors

Stable APIs (SAPI)

C/C++ Stream Language Others...
N\ |
\ High Level Compiler _ _ Machine ModeI;J
Stable Architecture Virtual Machine API
Abstraction Layer UvM SVM
(SAAL) TVM-HAL |

{ Binaries ___—————— \}

TRIPS MONARCH Smart Memories RAW Others...

ASI-

Informerion Sciences Insffute

* From SVM Specification 1.0.1 5/22

Advantages of SVM m

m Efficiency

O Compiler can generate efficient code by exposing communication and
computation to compiler.
e SVM API provides primitives for stream communication and computation.
e Streams provide optimization hints.
O Ex.: ordered data, memory space for data, etc.

m Portability
O Support for multiple languages and architectures in a single framework
O Portability across multiple architectures

m Low development cost

O Adding new language

e Only the HLC needs to be written.
O Adding new architecture

e Only the LLC needs to be written.

O Programming applications
e Ex. HLC provides parallelism.

* For more information, visit http://www.morphware.org

ISl

Informerion Sciences Insffute

6/22

Raw Processor

m Developed by MIT

O Small academic development team
m 16 tiles in a chip

® Run up to 425 MHz (0.15 pm)

o - 4-stage
, Computing TN
R orocessor 7 p'?:eFI)'Bed
R (8 stage 32 bit,
R single issue, 32 KB
) @ —G . :'D: in order) I-C?Dche
‘ | 64KB |
I-Cache (3.0”;_'
j . ju ju 1| muication
(Y ¢) () (3_: 32 KB
C_ _ _ —1 &
. D.Cache [Processor
(o —C —C >—=C > <
-«
-

7\

8 32-bit

ISI/ channels

Informerion Sciences Insffute

PCA

AdAA,

Raw “Handheld” Board

m Developed by USC/ISI in conjunction with MIT
m One chip on a board

m Board up to 300 MHz

T
-) - B

Raw chip

ASI-

Informerion Sciences Instifute

HLC and LLC for Raw m

m HLC

O R-Stream -- developed by
Reservoir Labs

m LLC
O Raw C compiler by MIT
O SVM library by USC/ISI

HLC R-Stream 2.0.3 . |Machine
Reservoir Labs model
SVM API Code

LLC

. Raw
ASl-

Infrmation Sconce Insiute 9/22

PCA

(Compact radar signal (Streaming matrix
processing application, Multiplication)
by Reservoir La

R-étream 2.0.3

HLC : * Results show
ﬂResuIts show Reservoir Labs potential
current status erformancet
of the tool
chain in SVM SVM API Code
framework
* Potential

rf t
Qe ormance / e

Hand-
optimization

TCurrently achieved using hand coding

10/22

/ﬁ) Raw

[nformerion Scwmss Institute:

m Ground Moving Target Indicator (GMTTI)

O Detects targets from input radar signal.

O Consists of 7 stages.
e First 6 stages implemented.

™ Time PR — 22 ™ Pulse 21 ™ 24
E’f, | 5 Adaptive E‘S, 5 Doppler
: Delay & f; Beamform | ¢ — : Filter

—{Equalizatiort » ﬁ —~ pression |—"
L 22
=% Compute
R Beamform
~ —] Weights
L) o) 2.7
\ | % 2.5—"\: _— 26— Target
- /41"l STAP " Detection |+ 7| Parameter
il I — | * 3] Estimation
/‘1
:I_E Cu::rmput-ez'5
—x STAP
Weights

Ground Moving Target Indicator m

Handoff to
Tracker

A.l. Reuther, “Preliminary Design Review: GMTI Narrowband for the Basic PCA Integrated Radar-Tracker
Application,” Project Report PCA-IRT-3, Lincoln Labs, 2004.

Informerion Sciences Insffute

1 1/ &

GMTI Execution Schedule

PCA

[Time delay and equalization [Doppler filtering
[] sTAP

[Target detection

[1 Automatic beam forming

[] Pulse compression

Tile 15|

Tile 13|

Tile 12|

Tile 11!

Tile 0 |

O

1]

Informerion Sciences Insffute

20 40 o©60 80 100 120 140 160 180 200 220 240

Number of cycles (*10000)
12/22

GMTI Execution Analysis m

m Parallelization

O Currently, up to 4 tiles are used.

e The latest results (not shown in this presentation) show up to 16 tile
parallelization.

O STAP looks like it is not parallelized.
e Actually, STAP uses software pipeline
e This will be clear if there are more than one data cube.

m Performance
O We are working on improvement of performance.
O Possible improvement methods in next slides

ISl

Informerion Sciences Insffute

13/22

Time Delay And Equalization (TDE) m

m Chosen as representative kernel for detailed analysis.

m TDE stage

O Convolution operation

O Parameters
e Input: 36 complex numbers
e Filters: 12 complex numbers

Computin
® Implemented pmci’ssor‘-‘
O Steps

e Move data from global memory (main memory) to local memory (cache)
Move data to a temporary array
FFT
Multiplication Local . —
IFFT memory |["o ¢ 2"y
Move data from temporary array to local memory 1
e Move data from local memory to global memory

O Algorithmic optimization Global
e Radix-4 FFT and IFFT used memory
e Bit-reverse eliminated

a

Iemp array

Data array

ISl

Informerion Sciences Insffute

14/22

TDE Stage Optimizations m

®m Elimination of duplicated code

O HLC generated code has code that does essentially the same thing more
than once.

O We manually eliminated duplicated code.

m Direct copy

O Copy operations using SVM APIs are optimized using direct C code
when possible.

® No copy to local memory
O Copy operations are replaced with code that relays pointer.

m Hand-assembly
O Use assembly code for core operations, such as FFT.

ISl

Informerion Sciences Insffute

15/22

Lower Bound Definitions

m Floating point lower bound
O Count only number of floating point operations

m Instruction lower bound
O Count minimum instructions needed

m Example
For (i=0; i<10; i++)
c[i] = a[i] + b;

O Floating point lower bound = 10 cycles

O Instruction lower bound = 31 cycle
e 10 load instructions for loading elements of a
1 load instruction for scalar variable b
10 floating point add operations for each computed element of ¢
10 store instructions for elements of ¢
Not counted: loop variable, index calculation
O These can be eliminated by optimizations.

ISl

Informerion Sciences Insffute

PCA

16/22

TDE Stage Results m

37% reduction

600000 - | @ R-Stream
2% reduction

500000 17% reduction —| | B Elimination of
duplicated code
n 24% reduction i
% 400000 g 0O Direct copy
5 _ _
Y= 0O No copy to local
o)
: 300000 memory
Q0 m Hand assembled
£ 200000 |
- T O Instruction lower
100000 —| bound
m Floating point
0 | I |]‘_fl || lower bound
Kernel run, copy Zero Multi- Copy from Average
to local memory padding plication temp mem over stage
Copy to temp FFT IFFT Copy to global
ISI memory memory
17/22

Informerion Sciences Insffute

Matrix Multiplication m

m C=AB

® Boundary tiles emulate network input/output by generating
and consuming data

— A A source
B source
B C destination
Matrix multiplication
C

rmeten S e 18/22

Matrix Multiplication Implementation m

® Hand coded using the SVM API (not HLC-generated code)

m Cost analysis and optimizations

O Full implementation

e Full SVM stream communication through Raw network
O One stream per network

e Each stream is allocated to a Raw scalar operand network.
O Broadcast

e With broadcasting by switch processor

e Communication is off-loaded from compute processor.
O Network ports as operands

e Raw can use network ports as operands
e Reduces cycles since load/store operations eliminated

ISl

Informerion Sciences Insffute

19/22

Matrix Multiplication Results m

250
= Number of cycles & xo —=— Dyrarmic dlient-server
per & 150 1 One stream per network
multiplication- S
addition pair F \\ Broadcast
£ = v Notworkports a5
m Lower bound=2 = —— operand

O Multiplication - —e— Lower bound
o {ESs B B S (o R
H Ad Number of words per communi on

15

10

1 2 4 8 1 2 & 128
20/22

Informerion Sciences Instifute

Conclusions m

m Evaluated tool chain in SVM framework on Raw

O Implemented signal processing kernels
e GMTI and matrix multiplication

O SVM framework functionally works well on Raw.
e With minor modifications of code from HLC

O Performance

e Currently, without optimization, there is a big difference between peak
performance and obtained performance.
e Both HLC and SVM library have room for improvement.
O These are in early development stages and being improved continuously.
e Optimizations boost performance close to the upper bound.

The SVM’s potential performance is promising.

ASI-

Informerion Sciences Insffute

21/22

Acknowledgements m

m The authors gratefully acknowledge the MIT Raw team for the
use of their compilers, simulators, Raw processor, and their
generous help.

m The authors gratefully acknowledge the Reservoir Labs for the
use of their compilers and their generous help.

m The authors also acknowledge MIT Lincoln Labs for providing

the GMTI application.

m Effort sponsored by Defense Advanced Research Projects Agency
(DARPA) through the Air Force Research Laboratory (),
USAF.

ASI-

Informerion Sciences Insffute

22/22

