
1/22

Implementations of Signal Processing 

Kernels using Stream Virtual Machine for 

Raw Processor

Jinwoo Suh, Stephen P. Crago, Dong-In Kang, and 
Janice O. McMahon

University of Southern California

Information Sciences Institute

September 20, 2005



2/22

Outline

Stream Virtual Machine (SVM) framework
What is the SVM? Why is it useful?

Raw processor

Signal processing kernels implementation results
Ground Moving Target Indicator (GMTI)
Matrix multiplication

Conclusions



3/22

Stream Processing

Stream processing
Processes input stream data and generates output stream data

Ex.: multimedia processing
Exploits the properties of the stream applications

Parallelism
Throughput-oriented

Stream Virtual Machine (SVM) framework
Developed by Morphware Forum 

Community supported stream processing framework
Sponsored by DARPA IPTO
Academia
Industry

Multiple languages 
StreamIt (MIT)
Extended C (Reservoir Labs)

Identifies stream data
Multiple architectures

Raw (MIT)
Smart Memories (Stanford)
TRIPS (Univ. of Texas)
MONARCH (USC/ISI)



4/22

Stream Virtual Machine (SVM)

Streams
Entities that contain an 
ordered collection of data 
elements of a given type

Kernels
Entities that contain a locus of 
streaming code
Consume zero or more input 
streams and produce zero or 
more output streams

Controls
Entities that embody a locus of 
control code
Initiate, monitor, and 
terminate the execution of 
kernels

* Definitions from SVM Specification 1.0.1

Input 
stream 1

Input
stream 2

+
Kernel

Output 
stream

KernelRun()

Control



5/22

Two Level Approach of SVM

High Level Compiler (HLC)
Parallelism detection, load balancing, coarse-grain scheduling of 
stream computations, and memory management for streaming data

Low Level Compiler (LLC)
Software pipelining, detailed routing of data items, management of 
instruction memory, and interfacing between stream processors and 
control processors

* From SVM Specification 1.0.1

Stable APIs (SAPI)

Stable Architecture
Abstraction Layer 
(SAAL)

Binaries

TRIPS MONARCH Smart Memories RAW Others...

High Level Compiler

Virtual Machine API

Machine Model

SVM
TVM-HAL

UVM SVM
TVM-HAL

UVM

Stream LanguageC/C++ Others…

Low Level Compilers



6/22

Advantages of SVM

Efficiency
Compiler can generate efficient code by exposing communication and 
computation to compiler.

SVM API provides primitives for stream communication and computation.
Streams provide optimization hints.

Ex.: ordered data, memory space for data, etc. 

Portability 
Support for multiple languages and architectures in a single framework
Portability across multiple architectures

Low development cost
Adding new language

Only the HLC needs to be written.
Adding new architecture

Only the LLC needs to be written.
Programming applications

Ex. HLC provides parallelism.

* For more information, visit http://www.morphware.org



7/22

Raw Processor

Developed by MIT
Small academic development team

16 tiles in a chip

Run up to 425 MHz (0.15 µm)
Computing
processor

(8 stage 32 bit,
single issue,

in order)

Com-
muication
processor

Crossbar
Switch

64 KB
I-Cache
32 KB

D-Cache

4-stage
pipelined

FPU

8 32-bit
channels

32 KB
I-Cache



8/22

Raw “Handheld” Board

Developed by USC/ISI in conjunction with MIT

One chip on a board

Board up to 300 MHz

Raw chip



9/22

HLC and LLC for Raw

HLC
R-Stream -- developed by 
Reservoir Labs

LLC
Raw C compiler by MIT
SVM library by USC/ISI

Stream kernels

Raw

Raw C
Compiler

SVM
Library

R-Stream 2.0.3 
(Reservoir Labs)
R-Stream 2.0.3 
(Reservoir Labs)

LLC

HLC

SVM API Code

Machine
model



10/22

Signal Processing Kernels

Ground Moving Target 
Indicator (GMTI)

(Compact radar signal 
processing application,

by Reservoir Labs)

Raw

Raw C
Compiler

SVM
Library

R-Stream 2.0.3 
(Reservoir Labs)
R-Stream 2.0.3 
(Reservoir Labs)

LLC

HLC

SVM API Code

Matrix multiplication
(Streaming matrix

Multiplication)

Hand-
optimization

Hand-
optimization

* Results show 
current status 
of the tool 
chain in SVM 
framework
* Potential 
performance†

* Results show
potential 
performance†

†Currently achieved using hand coding



11/22

Ground Moving Target Indicator

Ground Moving Target Indicator (GMTI)
Detects targets from input radar signal.
Consists of 7 stages.

First 6 stages implemented.

A.I. Reuther, “Preliminary Design Review: GMTI Narrowband for the Basic PCA Integrated Radar-Tracker 
Application,” Project Report PCA-IRT-3, Lincoln Labs, 2004.



12/22

0 20 40 60 80 100 120 140 160 180 200 220 240

GMTI Execution Schedule

Number of cycles (*10000)

Tile 11

Tile 12

Tile 13

Tile 15

Time delay and equalization 

Automatic beam forming

Pulse compression

Doppler filtering

STAP

Target detection

Tile 0



13/22

GMTI Execution Analysis

Parallelization
Currently, up to 4 tiles are used.

The latest results (not shown in this presentation) show up to 16 tile 
parallelization.

STAP looks like it is not parallelized.
Actually, STAP uses software pipeline
This will be clear if there are more than one data cube.

Performance
We are working on improvement of performance.
Possible improvement methods in next slides



14/22

Time Delay And Equalization (TDE)

Chosen as representative kernel for detailed analysis.

TDE stage
Convolution operation
Parameters

Input: 36 complex numbers
Filters: 12 complex numbers

Implemented
Steps

Move data from global memory (main memory) to local memory (cache)
Move data to a temporary array
FFT
Multiplication
IFFT
Move data from temporary array to local memory
Move data from local memory to global memory

Algorithmic optimization
Radix-4 FFT and IFFT used
Bit-reverse eliminated

Local
memory

Global 
memory Data array

Temp array

Computing
processor

Data array



15/22

TDE Stage Optimizations

Elimination of duplicated code
HLC generated code has code that does essentially the same thing more 
than once.
We manually eliminated duplicated code.

Direct copy
Copy operations using SVM APIs are optimized using direct C code
when possible.

No copy to local memory
Copy operations are replaced with code that relays pointer.

Hand-assembly
Use assembly code for core operations, such as FFT.



16/22

Lower Bound Definitions

Floating point lower bound
Count only number of floating point operations

Instruction lower bound
Count minimum instructions needed

Example
For (i=0; i<10; i++)

c[i] = a[i] + b;

Floating point lower bound = 10 cycles
Instruction lower bound = 31 cycle

10 load instructions for loading elements of a
1 load instruction for scalar variable b
10 floating point add operations for each computed element of c
10 store instructions for elements of c
Not counted: loop variable, index calculation

These can be eliminated by optimizations.



17/22

0

100000

200000

300000

400000

500000

600000 R-Stream

Elimination of
duplicated code
Direct copy

No copy to local
memory
Hand assembled

Instruction lower
bound
Floating point
lower bound

TDE Stage Results
N

um
be

r o
f c

yc
le

s

37% reduction

2% reduction

17% reduction

24% reduction

Kernel run, copy 
to local memory

Zero 
padding

Copy to temp
memory

Multi-
plication

FFT

Copy from
temp mem

IFFT

Average
over stage

Copy to global
memory



18/22

Matrix Multiplication

C = AB

Boundary tiles emulate network input/output by generating 
and consuming data

A source
B source
C destination
Matrix multiplication

A

B

C



19/22

Matrix Multiplication Implementation

Hand coded using the SVM API (not HLC-generated code)

Cost analysis and optimizations
Full implementation

Full SVM stream communication through Raw network
One stream per network

Each stream is allocated to a Raw scalar operand network.
Broadcast

With broadcasting by switch processor
Communication is off-loaded from compute processor.

Network ports as operands
Raw can use network ports as operands
Reduces cycles since load/store operations eliminated



20/22

Matrix Multiplication Results

Number of cycles 
per 
multiplication-
addition pair

Lower bound = 2
Multiplication
Addition

0

50

100

150

200

250

1 2 4 8 16 32 64 128
Number of words per communication

Dynamic client-server

One stream per network

Broadcast

Network ports as
operand
Lower bound

0

5

10

15

20

25

1 2 4 8 16 32 64 128

Lower bound=2

Best obtained results = 2.23 

N
um

be
r o

f c
yc

le
s



21/22

Conclusions

Evaluated tool chain in SVM framework on Raw
Implemented signal processing kernels

GMTI and matrix multiplication
SVM framework functionally works well on Raw.

With minor modifications of code from HLC
Performance

Currently, without optimization, there is a big difference between peak 
performance and obtained performance.
Both HLC and SVM library have room for improvement.

These are in early development stages and being improved continuously.
Optimizations boost performance close to the upper bound.

The SVM’s potential performance is promising.



22/22

Acknowledgements

The authors gratefully acknowledge the MIT Raw team for the 
use of their compilers, simulators, Raw processor, and their 
generous help. 

The authors gratefully acknowledge the Reservoir Labs for the 
use of their compilers and their generous help.

The authors also acknowledge MIT Lincoln Labs for providing 
the GMTI application. 

Effort sponsored by Defense Advanced Research Projects Agency 
(DARPA) through the Air Force Research Laboratory (AFRL), 
USAF.




