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Introduction

In the last decade, high-performance 3D graphics hardware
has become as ubiquitous as floating-point hardware.
Graphics processors (GPUs) are now a part of almost every
personal computer, game console, or workstation. In fact,
the two major computational components of a desktop are
the CPU and the GPU. Modern GPUs feature
programmable vertex and fragment processors. The GPUs
can be thought of as a particular kind of stream processors,
which operate on data streams consisting of an ordered
sequence of attributed primitives like vertices or fragments.
As compared to conventional CPUs, GPUs consist of high-
bandwidth memories and more floating-point hardware
units. For example, current top of the line GPU, such as
NVIDIA 6800 Ultra, has peak performance of 45 GFLOPS
and memory bandwidth of 36 GB/sec, as compared to 12
GFLOPS and 6 GB/sec, respectively, for a 3 GHz, Pentium
IV CPU. Furthermore, the GPUs performance for graphics
applications has been growing at a rate of 2.- 3 times a year,
which is faster than the Moore’s Law for CPUs. For
example, the recently announced Sony Playstation 3
console has a programmable GPU known as “Reality
Synthesizer” with a peak performance of 1.8 TFLOPS and a
cell processor with a peak performance of 218 GFLOPS.
Moreover, desktop and laptop systems with multiple
commodity GPUs are also becoming available.

Our goal is to exploit the computational power of GPU for
many scientific, database and geometric applications. GPUs
are primarily designed for the rapid rasterization of
geometric primitives to shaded pixels on the screen. In
order to utilize the computational power and memory
bandwidth available in the GPUs, we have designed novel
GPU-based algorithms for a variety of problems that utilize
the rasterization capabilities. The set of problems include
database and data mining queries, linear algebra
computations, sorting and fast fourier transformations,
motion planning and navigation, simulations of physical
phenomena including fluids, and geometric algorithms. In
all these applications, the performance of the underlying
algorithms is a direct function of rasterization performance
and is growing at a faster than Moore’s Law on successive
generation of GPUs.

Our GPU-based algorithms use the inherent pipelining and
parallelism, single instruction and multiple data (SIMD)
capabilities, and the vector processing functionalities of the
graphics processors to perform the computations efficiently.
Our algorithms account for relatively low bandwidth
available between the CPU and the GPU, and perform a

large fraction of the computation efficiently on the GPU.
We also take into account the poor performance of
programming constructs such as branching instructions in
the programmable GPU pipeline, and use alternate
strategies for efficiently evaluating the computations such
as blending-based conditional assignments Finally, we have
analyzed the memory access behaviors of these
computations on the GPUs and designed cache-efficient
algorithms for improved performance.
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Figure 1: This graph highlights the performance of a database
range query on a NVIDIA GeForce FX 6800 Ultra GPU
(NV40), NVIDIA GeForce FX 5900 Ultra GPU (NV35), and a
2.8GHz Intel Xeon processor. We observe that our GPU-based
algorithm exhibits nearly S times performance improvement
between two successive generations of GPUs, NV35 and
NV40.

Applications

In this section, we briefly describe many of our GPU-based
algorithms and their applications.

Database Algorithms

Database management systems are an integral part of many
data warehousing applications and often demand high
processing power for fast query execution. We have
designed new algorithms to perform fast relational database
operations on GPUs [2]. These include predicates, boolean
combinations, selectivity and aggregation queries, and join
queries. Our algorithms have been implemented using
simple fragment programs and applied to databases with up
to a million records. We have performed comparisons with
SSE optimized CPU algorithms on a 2.8 GHz Xeon
processor. Our results indicate a performance improvement
of 5-20 times using our GPU-accelerated database queries
on a NVIDIA GeForceFX 6800 Ultra GPU.



Stream Mining Algorithms

Many real-world applications such as sensor networks,
network and financial monitors, online transaction trackers
analyze large volumes of data streams, usually collected
from different sources. In these data streaming applications,
each data element has to be processed in real-time, and used
for estimating the frequency of the element etc. Due to the
limited memory requirements, and the need for
computational resources, the underlying CPU is usually
resource-limited. We use the fast stream processing
capabilities of the GPUs for estimating the frequencies and
quantiles in large data streams. We present a fast sorting
algorithm on GPUs [3] and use it for histogram
computations. Our sorting algorithm uses the blending and
texture mapping hardware on GPUs to efficiently perform
comparisons and comparator mapping on GPUs. We have
obtained a speedup of a factor of 2 over optimized CPU
algorithms on high end PCs.
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Figure 2: This graph highlights the performance of CPU and
GPU sorting algorithms on a NV40 GPU and a 3.4 GHz Intel
Pentium IV CPU. We observe that our bitonic sorting
algorithm is nearly 6 times faster than Quicksort on CPUs.

Linear Algebra Computations

LINPACK is a popular benchmark used in the TOP500.
Dense linear algebra solvers have been studied for several
decades and used in many high performance simulations
such as fluids. We have mapped two direct linear system
solvers on GPUs — LU decomposition and Gaussian
elimination using efficient GPU representations and
analyzed their performance [1]. Our algorithms achieve the
peak memory bandwidth available on GPUs and the
performance is comparable with the cache- and SSE-
optimized CPU implementations such as ATLAS.

Geometric Algorithms

Geometric algorithms are fundamental in the design,
visualization, and engineering of automobiles, virtual
reality and CAD/CAM applications, spatial queries for
geological information systems, etc. We have developed
new GPU-based algorithms for performing voronoi
computations [9], proximity and intersection computations
[6, 8], transparency and shadow generation algorithms,
distance fields, and line-of-sight computation algorithms.

In many cases, we are able to obtain more than one order of
magnitude improvement over CPU-based algorithms, e.g.
collision detection between deformable models and 3D
distance field computations.

Motion Planning and Navigation

Motion planning is a classis problem in robotics. Its
applications include virtual prototyping, surgical
simulation, navigation in virtual environments and
computer animation. We have designed novel motion
plannings algorithms for dynamic environments and
deformable robots in complex environments [7,8]. These
algorithms compute a discrete approximation of the
distance field using the rasterization hardware and
significantly outperform prior CPU-based algorithms.

Scientific Computations

GPU-based algorithms have been designed for a variety of
scientific applications including fluid simulation [4], phase
field methods [5] as well as solving deformable models. In
many of these cases, the underlying numerical
computations are reduced to running fragment programs on
operands represented in the texture memory.

There is considerable interest in building GPU clusters to
solve many high-performance computations such as
molecular dynamics, cloth simulation and finite-element
simulations.
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