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Abstract1

Software is often the dominant cost associated with 
developing DoD High Performance Embedded Computing 
(HPEC) systems.  Historically there has been no 
quantifiable methodology for comparing the difficulty of 
developing code on different HPEC systems and trading off 
ease of development vs. execution performance.  The 
DARPA High Productivity Computing Systems (HPCS) 
program is developing methodologies for the High 
Performance Computing (HPC) community, which may 
also be applicable to the HPEC community.  This paper 
presents early results of one approach for measuring the 
relative development time productivity of different parallel 
programming environments.  This metric, defined as the 
ratio of relative execution performance to relative 
programmer effort, has been used to analyze several HPC 
benchmark codes and classroom programming assignments.  
The results of this analysis show consistent trends for 
various programming models.  This approach enables a 
high-level evaluation of relative development time 
productivity for a given programming model, which is 
essential to the task of estimating software development 
cost for HPC and HPEC systems. 

Introduction 
Software is often the dominant cost associated with 
developing HPEC systems, but historically there has been 
no method of quantifying and comparing the difficulty of 
developing code on different systems, or for weighing ease 
of development against execution performance.  The HPCS 
program [1] is developing methods of quantifying the 
productivity of HPC systems, and these methods may also 
apply to HPEC systems.  In the HPCS program, overall 
HPC system productivity, Ψ, has been defined as utility 
over cost: 
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The utility of the solution, U(T), is a (generally decreasing) 
function of time, and the denominator of the formula is a 
sum of software (CS), operation (CO), and machine (CM) 
costs.  In the special case of a lone researcher or team 
developing small codes (possibly for HPEC systems), we 
measure utility in terms of how fast the code runs, and 
assume we are only concerned with the cost, or effort 
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required, to develop the code (CS).  If we then normalize the 
parallel performance and cost with respect to those of a 
corresponding serial code, we arrive at a formula for 
relative development time productivity: 
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For the analyses in this paper, relative effort is calculated as 
the ratio of parallel to serial code size.  To test this metric, 
we have applied it to two HPC benchmark suites.  The HPC 
Challenge suite [3] consists of several activity-based 
benchmarks designed to test various aspects of a computing 
platform.  The four benchmarks used in this study were 
FFT (v0.6a), High Performance Linpack (HPL, v0.6a), 
RandomAccess (v0.5b), and Stream (v0.6a).  The NAS 
Parallel Benchmark (NPB) [4] suite consists of five kernel 
benchmarks and three pseudo-applications from the field of 
computational fluid dynamics.  In addition, we have applied 
this metric to data collected from a series of classroom 
parallel programming assignments.   
 
Analysis and Results 
The HPC Challenge benchmarks were run on 64 dual-
processor nodes connected by Gigabit Ethernet [5].  To 
compare low- and high-level languages, each benchmark 
was implemented in serial C, C+MPI, Matlab, and pMatlab.  
The execution time of each implementation was measured 
and normalized with respect to serial C to compute 
speedup.  Similarly, the relative effort required for each 
implementation was computed by normalizing its size, 
measured in Source Lines of Code (SLOC), with respect to 
serial C.  The relative development time productivity for 
each implementation was then calculated by dividing 
speedup by relative effort. 
    The results for the HPC Challenge benchmarks are 
presented in the first column of Figure 1.  (The 
implementations of Random Access require a great deal of 
inter-processor communication, and so actually run slower 
as more processors are involved in a network cluster.)  With 
the exception of Random Access, the MPI implementations 
all fall into the upper-right quadrant of the top graph, 
indicating that they deliver some level of parallel speedup, 
while requiring larger code sizes relative to serial C.  As 
expected, the serial Matlab implementations do not deliver 
any speedup, but do all have smaller relative code sizes.  
The pMatlab implementations (except Random Access) fall 
into the upper-left quadrant of the graph, delivering parallel 
speedup while requiring smaller relative code size.  The  
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Figure 1: Top row: Speedup vs. Relative Code Size.  Bottom row: Relative Development Time Productivity 

combination of parallel speedup and reduced relative code 
size means that the pMatlab implementations generally 
have the highest relative development time productivity 
values of the three (Figure 1, bottom left).   
    The NPB codes were run on an IBM p655 multiprocessor 
computer using the Class A problem size and four 
processors (in the parallel case).  The speedup, relative code 
size, and relative development time productivity were 
calculated in the same manner as for HPC Challenge.  The 
results for NPB are shown in the middle column of Figure 
1.  These results show that OpenMP tends to have speedup 
comparable to MPI, with a smaller relative code size 
(Figure 1, top center).  This is reflected in the higher 
relative development time productivity values for OpenMP 
(Figure 1, bottom center).  As a general rule, we expect to 
see traditional parallel languages and libraries such as MPI 
and OpenMP fall in the upper-right quadrant of the graph.  
This reinforces our intuition that parallel performance is 
achieved at the cost of additional effort (over serial 
implementation). 
    A series of classroom experiments was conducted for the 
HPCS program, in which students from several different 
classes were asked to produce parallel programming 
solutions to a variety of textbook problems.  In most cases 
the students first created a serial program to solve the 
problem, and this was used as the baseline for comparison 
with their parallel solution.  The students used C, Fortran, 
and Matlab for their serial codes, and created parallel 

versions using MPI, OpenMP, and Matlab*P (aka StarP, a 
parallel extension to Matlab) [6].  The students ran their 
programs on a variety of computing platforms, and reported 
their own timings. All speedups were calculated using eight 
processors for the parallel case.  Relative code size and 
relative development time productivity were calculated in 
the same manner as with the benchmark codes. 
    The results for the classroom assignments are presented 
in the right column of Figure 1.  The speedup and relative 
code size were collected for each student, and the median 
values for each assignment are plotted on the graph.  The 
ideal speedup in this case is eight.  Some outlier data is not 
shown, and error bars are one standard deviation from the 
median.  The MPI data points for the most part fall in the 
upper-right quadrant of the graph, resulting in development 
time productivity values at or above one (Figure 1, top 
right).  The OpenMP data points indicate a higher achieved 
speedup compared to MPI, while also requiring fewer lines 
of code.  This yields higher relative development time 
productivity values for OpenMP (Figure 1, bottom right). 
 
Conclusions 
We have introduced a common metric for measuring 
relative development time productivity of HPC software.  
This metric has been applied to data from benchmark codes 
and classroom experiments, with consistent results.  In 
general the data supports the belief that MPI 
implementations yield good speedup but have larger 



 

relative code sizes than other implementations.  OpenMP 
generally provides speedup comparable to MPI, but with 
smaller relative code size.  This yields higher relative 
development time productivity values.  The pMatlab 
implementations of HPC Challenge provide an example of 
a language that can yield good speedup for some problems, 
while requiring smaller relative code size, again leading to 
higher values of the relative development time productivity 
metric.   
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