
Sparse Matrix-Vector Multiplication Kernel on a Reconfigurable Computer
Sreesa Akella

Department of Computer Science and Engineering,
University of South Carolina

Columbia, SC 29208
akella@engr.sc.edu

 Melissa C. Smith, Richard T. Mills,
Sadaf R. Alam, Richard F. Barrett, Jeffrey S. Vetter

Oak Ridge National Laboratory
Oak Ridge, Tennessee, 37831-6173

{smithmc | rmills | alamsr | rbarrett | vetterjs}@ornl.gov

Abstract
The SRC reconfigurable computer provides the capability
of obtaining application-specific driven performance for
high data bandwidth, computationally intensive
applications. It has high-density FPGA devices with local
distributed memory banks that can be utilized to obtain high
performance for floating point applications. The floating-
point Sparse Matrix Vector (SpMatVec) multiplication, a
key computation kernel in many scientific applications does
not run at peak performance on general purpose
microprocessors. The high I/O bandwidth and avoidance of
cache-hierarchy architecture in this reconfigurable
computer allow us to efficiently implement the floating-
point SpMatVec kernel on the SRC platform. In this paper
we investigate the implementation of a floating-point
SpMatVec kernel on the SRC MAPstation and benchmark
its performance against other general-purpose
microprocessor-based implementations.

Introduction
The floating point SpMatVec multiplication kernel forms
an integral part of several scientific and engineering
applications such as iterative matrix equation solvers. The
cache hierarchy based general purpose microprocessors
exhibit low performance in implementing this kernel for
two main reasons. Firstly, the irregular memory access
patterns due to poor data locality of sparse matrices causes
large number of cache misses. Secondly, the high ratio of
load/store operations to floating- point operations result in
low utilization of the floating-point units [1]. Several
techniques and optimizations have been proposed to
overcome these two problems but depend on the sparsity
information of the matrices [2, 3].

Recent advances in FPGA logic and capacity now provide
the means to effectively implement floating point
applications. It has been shown that current FPGAs with
abundant on-chip memory and I/O pin resources provide
peak floating-point performance surpassing that of
microprocessors [4]. In [5, 6] Prasanna et al. implemented
floating-point cores and dense matrix-vector multiplication
on FPGA devices and compared the performance with that
of general purpose microprocessors.

Recently some amount of work has been conducted with
SpMatVec operations on FPGAs. In [7] ElGindy et al.
implemented fixed point SpMatVec multiplication on the
PCI-Pamette FPGA-based system. They evaluate single,
dual and triple constant-coefficient hardware multiplier
systems that can be reconfigured at run-time through a host
computer-based scheduler. In [8] Wang et al. implemented
a parallel LU factorization of sparse matrices on the Altera

Nios development board and the SOPC development board.
Their work focuses on integration of floating point
multiplication, addition and division units with the Nios
soft IP RISC processor core and the implementation of a
multiprocessor parallel machine on both the development
boards. They evaluate the performance of these machines
using the bordered diagonal block sparse matrix LU
factorization application.

In contrast, there has been limited work in the field of
floating-point SpMatVec multiplication using application-
specific designs on FPGAs. In [9] the authors look at an
implementation of an optimized SpMatVec multiplication
kernel on a Virtex-II Pro FPGA device. They analyze and
compare its performance in GFLOPS to that of an Itanium®

2 processor. In [10] a multi-FPGA based implementation is
explored and its performance is compared to a general
purpose microprocessor-based multiprocessor system.
These authors show that FPGAs can be utilized to achieve
high performance on SpMatVec multiplication kernel;
however they do not deal with the real issues of
implementing the kernel on a FPGA-based high
performance computing system.

Our implementation of a floating-point SpMatVec
multiplication kernel on the SRC MAPstation
reconfigurable platform aims to provide actual performance
numbers by including the issues of 1) FPGA configuration
time and, 2) data communication time between the host
processor, on which the main application resides, and the
FPGA, on which the SpMatVec multiplication kernel
resides. This approach provides a realistic view of the
advantages and disadvantages of implementing scientific
applications for which the floating point SpMatVec
multiplication is an integral part, on a FPGA-based high
performance computer.

The SRC MAPstation
The SRC MAPstation, by SRC Computers [11], removes
the programmer from the details of underlying hardware
architecture and allows one to focus on the function
implementation. This approach reduces the time to solution
by facilitating software development by programmers and
mathematicians.

The SRC MAPstation architecture includes dual 2.8 GHz
Pentium 4 Intel® microprocessors (µPs) running the Linux
operating system. The reconfigurable logic resource, or
MAP®; MAP® board normally comes in pairs attached to
these µPs. Each MAP® as shown in Figure 1 consists of two
Xilinx® Virtex XCV6000 FPGA chips running at 100 MHz,
a control processor, and six 4 MB SRAM banks referred to
as OnBoardMemory (OBM). Code for the µPs is written in

standard C or Fortran. Code for the MAP® hardware is also
written in C or Fortran and compiled by an SRC-proprietary
compiler that targets the MAP® components. Calls to
execute on the MAP® are function/subroutine calls from the
standard C or Fortran modules.
execute on the MAP® are function/subroutine calls from the
standard C or Fortran modules.

Figure 1. MAP® interface block diagram [12]

The SRC MAPstation C Map Implementation
The SpMatVec multiplication requires computing the
matrix-vector product . Where A is m x m sparse
matrix with nz number of non-zero elements and x and y are
vectors of length m.

Axy =

The sparse matrix is represented in a compressed storage
format that stores only the non-zero elements. The
Compressed Row Storage (CRS) format is one of the
simplest and most efficient formats that does not make
assumptions on the sparsity structure of the matrix [13]. We
employ this format for storing the matrix in the memory.
The format represents the matrix as three vectors: NZ of
length nz, for the non-zero floating-point elements; CO for
the column indices of the non-zeros of length nz; and PT of
length m+1 for the pointers to the non-zero elements in NZ
that start a column. From the PT vector we generate an
additional vector CL that stores the size of each column or
the number of non-zeros in each column.

The basic architecture of the implementation is given in
Figure 2. It consists of n parallel 64-bit floating point
multiplier accumulators (MACs) working on n different
matrix elements. Each MAC works on one row of the
matrix to obtain one element of the output vector OV.

Figure 2. Basic architecture of the SpMatVec multiplier

The elements of each column are read in sets of n. Each
column is thus partitioned into sub-columns of size n. Thus
a column of size k would be partitioned to ⎡ ⎤nk / sub-
columns. Each sub-column is read from the OBMs or the
BRAMs and fed to the MACs in parallel. The MACs are
iteratively fed all the first sub-columns of every column to
produce the first n elements of the output vector OV. The
indexing of the first sub-columns is done by using the PT
array which stores the index to the first non-zero element of

each column. The above step is repeated until all sub-
columns of the every column are processed to obtain all
elements of the output vector OV. The matrix, the input and
output vectors are stored in the available six OBMs on the
MAP and on-chip BRAMs in the FPGA.

Performance Analysis
In our evaluation of floating-point SpMatVec on the SRC
reconfigurable computing architecture, we analyze the
performance of the implementation and evaluate its
MFLOPS performance. We benchmark these results against
other implementations on traditional microprocessor-based
systems. These implementation results are applicable to the
more general use of SpMatVec kernels in the
implementation of iterative solvers for matrix equations as
used in scientific and engineering applications. Future plans
are to scale this implementation to multi-FPGA and
multiprocessor systems such as the Cray XD1 [14].

References
[1] S. Toledo, “Improving Memory-System Performance of

Sparse Matrix-Vector Multiplication,” IBM Journal of
Research and Development, 41(6), pg 711-725, 1997.

[2] E. J. Im, K.A. Yelick, R. Vuduc, “SPARSITY: Optimization
framework for sparse matrix kernels,” International Journal
of High-Performance Computing Applications, 18(1) pg 135-
58, 2004.

[3] W. D. Gropp, D.K. Kaushik et al., “Performance Modeling
and Tuning of an Unstructured Mesh CFD Application,”
Proceedings of SC2000: High Performance Networking and
Computing Conference. (electronic publication), 2000.

[4] K. D. Underwood, and K. S. Hemmert, “Closing the GAP:
CPU and FPGA Trends in Sustainable Floating-Point BLAS
Performance,” In Proceedings of 2004 IEEE Symposium on
Field-Programmable Custom Computing Machines, 2004.

[5] G. Govindu, et al., “Analysis of High-Performance Floating-
Point Arithmetic on FPGAs,” In Proceedings of the 11th
Reconfigurable Architectures Workshop, 2004.

[6] L. Zhuo, V. K. Prasanna, “Scalable and Modular Algorithms
for Floating-Point Matrix Multiplication on FPGAs,” In
Proceedings of the 18th International Parallel & Distributed
Processing Symposium, 2004.

[7] H. A. ElGindy, Y. L. Shue, “On Sparse Matrix-Vector
Multiplication with FPGA-based System,” In Proceedings of
the 10th IEEE Symposium on Field-Programmable Custom
Computing Machines, 2002.

[8] X. Wang, S. G. Ziavras, “Performance Optimization of an
FPGA-Based Configurable Multiprocessor for Matrix
Operations,” In Proceedings of IEEE International
Conference on Field Programmable Technology, 2003.

[9] L. Zhuo, V. K. Prasanna, “Sparse Matrix-Vector
Multiplication on FPGAs,” In Proceedings of the 13th
International Symposium on Field Programmable Gate
Arrays, 2005.

[10] M. deLorimier, A. DeHon, “Floating-point Sparse Matrix-
Vector Multiply for FPGAs,” In Proceedings of the 13th
International Symposium on Field Programmable Gate
Arrays, 2005.

[11] SRC Computers, Inc., www.srccomp.com.
[12] SRC MAP Hardware guide, Version 1.9, SRC Computers,

Inc.
[13] R. Barrett, et al., “Templates for the Solution of Linear

Systems: Building Blocks for Iterative Methods”, 2nd edition,
SIAM, 1994.

[14] Cray, Inc., www.cray.com

