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Abstract 
The SRC reconfigurable computer provides the capability 
of obtaining application-specific driven performance for 
high data bandwidth, computationally intensive 
applications. It has high-density FPGA devices with local 
distributed memory banks that can be utilized to obtain high 
performance for floating point applications. The floating-
point Sparse Matrix Vector (SpMatVec) multiplication, a 
key computation kernel in many scientific applications does 
not run at peak performance on general purpose 
microprocessors. The high I/O bandwidth and avoidance of 
cache-hierarchy architecture in this reconfigurable 
computer allow us to efficiently implement the floating-
point SpMatVec kernel on the SRC platform. In this paper 
we investigate the implementation of a floating-point 
SpMatVec kernel on the SRC MAPstation and benchmark 
its performance against other general-purpose 
microprocessor-based implementations. 

Introduction 
The floating point SpMatVec multiplication kernel forms 
an integral part of several scientific and engineering 
applications such as iterative matrix equation solvers. The 
cache hierarchy based general purpose microprocessors 
exhibit low performance in implementing this kernel for 
two main reasons. Firstly, the irregular memory access 
patterns due to poor data locality of sparse matrices causes 
large number of cache misses. Secondly, the high ratio of 
load/store operations to floating- point operations result in 
low utilization of the floating-point units [1]. Several 
techniques and optimizations have been proposed to 
overcome these two problems but depend on the sparsity 
information of the matrices [2, 3]. 

Recent advances in FPGA logic and capacity now provide 
the means to effectively implement floating point 
applications. It has been shown that current FPGAs with 
abundant on-chip memory and I/O pin resources provide 
peak floating-point performance surpassing that of 
microprocessors [4]. In [5, 6] Prasanna et al. implemented 
floating-point cores and dense matrix-vector multiplication 
on FPGA devices and compared the performance with that 
of general purpose microprocessors.  

Recently some amount of work has been conducted with 
SpMatVec operations on FPGAs. In [7] ElGindy et al. 
implemented fixed point SpMatVec multiplication on the 
PCI-Pamette FPGA-based system. They evaluate single, 
dual and triple constant-coefficient hardware multiplier 
systems that can be reconfigured at run-time through a host 
computer-based scheduler. In [8] Wang et al. implemented 
a parallel LU factorization of sparse matrices on the Altera 

Nios development board and the SOPC development board. 
Their work focuses on integration of floating point 
multiplication, addition and division units with the Nios 
soft IP RISC processor core and the implementation of a 
multiprocessor parallel machine on both the development 
boards. They evaluate the performance of these machines 
using the bordered diagonal block sparse matrix LU 
factorization application. 

In contrast, there has been limited work in the field of 
floating-point SpMatVec multiplication using application-
specific designs on FPGAs. In [9] the authors look at an 
implementation of an optimized SpMatVec multiplication 
kernel on a Virtex-II Pro FPGA device. They analyze and 
compare its performance in GFLOPS to that of an Itanium® 

2 processor. In [10] a multi-FPGA based implementation is 
explored and its performance is compared to a general 
purpose microprocessor-based multiprocessor system. 
These authors show that FPGAs can be utilized to achieve 
high performance on SpMatVec multiplication kernel; 
however they do not deal with the real issues of 
implementing the kernel on a FPGA-based high 
performance computing system.  

Our implementation of a floating-point SpMatVec 
multiplication kernel on the SRC MAPstation 
reconfigurable platform aims to provide actual performance 
numbers by including the issues of 1) FPGA configuration 
time and, 2) data communication time between the host 
processor, on which the main application resides, and the 
FPGA, on which the SpMatVec multiplication kernel 
resides. This approach provides a realistic view of the 
advantages and disadvantages of implementing scientific 
applications for which the floating point SpMatVec 
multiplication is an integral part, on a FPGA-based high 
performance computer. 

The SRC MAPstation 
The SRC MAPstation, by SRC Computers [11], removes 
the programmer from the details of underlying hardware 
architecture and allows one to focus on the function 
implementation. This approach reduces the time to solution 
by facilitating software development by programmers and 
mathematicians. 

The SRC MAPstation architecture includes dual 2.8 GHz 
Pentium 4 Intel® microprocessors (µPs) running the Linux 
operating system. The reconfigurable logic resource, or 
MAP®; MAP® board normally comes in pairs attached to 
these µPs. Each MAP® as shown in Figure 1 consists of two 
Xilinx® Virtex XCV6000 FPGA chips running at 100 MHz, 
a control processor, and six 4 MB SRAM banks referred to 
as OnBoardMemory (OBM). Code for the µPs is written in 



standard C or Fortran.  Code for the MAP® hardware is also 
written in C or Fortran and compiled by an SRC-proprietary 
compiler that targets the MAP® components.  Calls to 
execute on the MAP® are function/subroutine calls from the 
standard C or Fortran modules. 
execute on the MAP® are function/subroutine calls from the 
standard C or Fortran modules. 

 
Figure 1. MAP® interface block diagram [12] 

The SRC MAPstation C Map Implementation 
The SpMatVec multiplication requires computing the 
matrix-vector product . Where A is m x m sparse 
matrix with nz number of non-zero elements and x and y are 
vectors of length m. 

Axy =

The sparse matrix is represented in a compressed storage 
format that stores only the non-zero elements. The 
Compressed Row Storage (CRS) format is one of the 
simplest and most efficient formats that does not make 
assumptions on the sparsity structure of the matrix [13]. We 
employ this format for storing the matrix in the memory. 
The format represents the matrix as three vectors: NZ of 
length nz, for the non-zero floating-point elements; CO for 
the column indices of the non-zeros of length nz; and PT of 
length m+1 for the pointers to the non-zero elements in NZ 
that start a column. From the PT vector we generate an 
additional vector CL that stores the size of each column or 
the number of non-zeros in each column. 

The basic architecture of the implementation is given in 
Figure 2. It consists of n parallel 64-bit floating point 
multiplier accumulators (MACs) working on n different 
matrix elements. Each MAC works on one row of the 
matrix to obtain one element of the output vector OV. 

 
Figure 2. Basic architecture of the SpMatVec multiplier 

The elements of each column are read in sets of n. Each 
column is thus partitioned into sub-columns of size n. Thus 
a column of size k would be partitioned to ⎡ ⎤nk /  sub-
columns. Each sub-column is read from the OBMs or the 
BRAMs and fed to the MACs in parallel. The MACs are 
iteratively fed all the first sub-columns of every column to 
produce the first n elements of the output vector OV. The 
indexing of the first sub-columns is done by using the PT 
array which stores the index to the first non-zero element of 

each column. The above step is repeated until all sub-
columns of the every column are processed to obtain all 
elements of the output vector OV. The matrix, the input and 
output vectors are stored in the available six OBMs on the 
MAP and on-chip BRAMs in the FPGA. 

Performance Analysis 
In our evaluation of floating-point SpMatVec on the SRC 
reconfigurable computing architecture, we analyze the 
performance of the implementation and evaluate its 
MFLOPS performance. We benchmark these results against 
other implementations on traditional microprocessor-based 
systems. These implementation results are applicable to the 
more general use of SpMatVec kernels in the 
implementation of iterative solvers for matrix equations as 
used in scientific and engineering applications. Future plans 
are to scale this implementation to multi-FPGA and 
multiprocessor systems such as the Cray XD1 [14].  
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