
Implementations of Signal Processing Kernels using Stream Virtual
Machine for Raw Processor

Jinwoo Suh, Stephen P. Crago, Dong-In Kang, and Janice O. McMahon
University of Southern California – Information Sciences Institute

3811 N. Fairfax Drive, Suite 200, Arlington, VA 22203
{jsuh, crago, dkang, jmcmahon}@isi.edu

Introduction1

Stream processing exploits the properties of the stream
applications such as parallelism and regularity. DARPA’s
Polymorphous Computing Architectures (PCA) program is
developing both hardware and software that support stream
(and thread) processing with a two-level compiler
infrastructure. The Morphware Forum was formed to
develop standard software interfaces to promote common
interfaces and software reuse [2]. The Stream Virtual
Machine (SVM) framework [1] is the intermediate
language between the high-level compiler and low-level
compiler for streaming applications. We implemented a
library-based version of the SVM for the Raw architecture.
The Raw SVM library in conjunction with Raw C compiler
comprises a functional low-level SVM compiler. We
implemented a matrix multiplication and FIR bank kernel
using the library and optimization manual optimization to
identify performance issues surrounding the SVM.

Stream Virtual Machine and Raw Processor
The SVM approach consists of a High Level Compiler
(HLC), Stream Virtual Machine (SVM), and Low Level
Compiler (LLC). Input to the HLC is a stream program.
The HLC is responsible for parallelism detection, load
balancing, coarse-grain scheduling of stream computations,
and memory management for streaming data [1]. The
output code from the HLC is based on the SVM API. The
SVM code is then compiled using the LLC to generate
binary code for a target platform. The LLC is responsible
for software pipelining, detailed routing of data items,
management of instruction memory, and interfacing
between stream processors and control processors [1]. With
this approach, when a new language or a new architecture is
introduced, it can leverage existing software in the HLC or
LLC.

The authors gratefully acknowledge the extraordinary support of the MIT
Raw team for the use of their compilers, simulators, Raw chip, and their
generous help.
The authors acknowledge Morphware Forum [2] for the Streaming Virtual
Machine standard upon which this implementation was performed.
This effort was sponsored by Defense Advanced Research Projects
Agency (DARPA) through the Air Force Research Laboratory, USAF,
under agreement number F30602-01-C-0171. The U.S. Government is
authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsement,
either expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), Air Force Research Laboratory, or the U.S.
Government.

Raw is a research processor chip implemented at MIT [4].
The current Raw implementation contains 16 tiles on a chip
connected by a very low latency 2-D mesh network through
switch processors.

Signal Processing Kernels
Matrix multiplication, C = AB, calculates an output matrix
C from A and B, where A, B, and C are matrices. We
implemented a systolic matrix multiplication on Raw. The
Raw tiles are utilized as shown in Figure 1. The input
matrix A travels from left to right, and the input matrix B
matrix travels from top to bottom. The result matrix C is
sent to the tiles on the right.

Figure 1: Matrix multiplication

The FIR bank application kernel is part of the kernel
benchmark suite [2] specified by Lincoln Laboratory the
PCA program. The FIR bank implements a set of M FIR
filters and each FIR filter m, m ∈ {0, 1, …, M-1}, has a set
of impulse response coefficients wm[k], k ∈ {0, … K-1}. It
is mathematically specified as:

1,...,1,0for],[][][
1

0
−=−= ∑

−

=

Nikwkixiy
K

k
mmm

.

The filter computations are distributed over Raw tiles such
that each processor tile has M/T Filters, where T is the
number of tiles. Each tile computes its own filters.
Therefore, there is no communications between tiles. The
FIR is implemented in the frequency domain because the
frequency domain computation is more computational
efficient than the time domain for data sizes. Therefore the
kernel requires an FFT operation, a complex product, and
an IFFT operation. The parameters for the results reported
in this paper are: K=12, N=32, and the length of the input
data is 1024 complex elements.

Implementation Results
We started with C source code compiled using the HLC [3].
The output from the HLC was then compiled using the gcc-
based Raw compiler in conjunction with the SVM library
on Raw. The code was then executed on a Raw prototype
board. This experiment is the first instance of Morphware

A source

B source

C destination

Matrix multiplication

software executing on PCA hardware and verified
functionality of the SVM framework on Raw. However, the
performance using the full path is not yet meaningful since
the HLC is still in an early stage of development and focus
has been on functionality.

We also implemented the FIR bank in optimized SVM code
to allow us to understand performance issues of the SVM
library. Furthermore, we performed several manual
optimizations on the resulting code. For example, we
statically assigned communication streams to specific
networks on Raw to eliminate software overhead for
managing multiple streams on a network. Another
optimization is using network ports as direct operands,
which is allowed on Raw because network ports are
mapped to registers names to eliminate load and store
instructions.

The performance results for matrix multiplication are
shown in Figure 2. The x-axis is the number of words per
communication packet and the y-axis is number of cycles
per multiplication-addition pair. Thus, the lower bound is
two cycles since each multiplication and addition needs one
cycle to execute.

1

10

100

1000

1 2 4 8 16 32 64 128
Number of words per communication

N
um

be
r o

f c
yc

le
s

SVM library
Hand-optimization
Lower bound

Figure 2. Matrix multiplication results

The curve named “SVM Library” shows the performance
when a full, general implementation of the SVM API is
used. The curve shows that the initial cost of the
communication using library approach can be amortized
over a long sequence of data, although significant overhead
is still incurred compared to an optimization application
implementation. The curve named “Hand-optimization”
shows the performance when several optimizations were
applied. The optimized results show that it takes only about
10% more overhead than the theoretical lower bound.

The implementation results for the FIR filter are shown in
Figure 3 and Figure 4. In Figure 3, Lower bound denotes
the number of cycles per floating point operation per tile
when only floating-point operations are considered. Since
each tile can compute one floating-point operation per cycle,
the lower bound is 1. The “practical” lower bound denotes
the number of cycles per floating point operations per tile
when load/store operations are considered as well as the
number of floating point operations. Note that the load/store
operations were inevitable in our FIR bank implementation
that uses Radix-4 FFT. Our results show that the hand-

optimized results are very close to the “practical” lower
bound with only about 10% overhead.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
yc

le
s

pe
r f

lo
at

in
g

po
in

t o
pe

ra
tio

n

Low er bound

"Practical" Low er
bound

Compiler optimization

Hand optimization

Figure 3. Throughput results for FIR bank (data from cache)

0

300000

600000

900000

Hand Optimization Compiler Optimization
N

um
be

r o
f c

yc
le

s
 Data from cache

Data from
memory

Figure 4. Latency results for FIR bank

Figure 4 shows the effect of accessing data from memory. It
takes about 16% additional cycles when data is accessed
from main memory instead of being pre-loaded into the
local memory.

Conclusion
The authors have presented implementation results for the
SVM library for the Raw processor. The library approach
enables a full path from a high-level language to the
processor and a quick validation of the SVM API.

We applied several manual optimizations to understand the
performance issues in SVM framework and were able to
obtain the performance very close to the theoretical peak
performance of the kernels. We expect similar performance
improvement can be obtained using optimizations when the
HLC and LLC are mature enough.

References
[1] P. Mattson, W. Thies, L. Hammond, M.V. Raytheon,

“Streaming Virtual Machine Specification,” Version 1.0,
http://www.morphware.org , July 2004.

[2] Morphware Forum, http://www.morphware.org, 2005.

[3] Reservoir Labs., “R-Stream - Streaming Compiler,”
http://www.reservoir.com/r-stream.php, 2005.

[4] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal,
“Scalar Operand Networks: On-chip Interconnect for ILP in
Partitioned Architectures,” ISCA, February 2003.

