
Implementations of Signal Processing Kernels using Stream Virtual 
Machine for Raw Processor 

Jinwoo Suh, Stephen P. Crago, Dong-In Kang, and Janice O. McMahon 
University of Southern California – Information Sciences Institute 

3811 N. Fairfax Drive, Suite 200, Arlington, VA 22203 
{jsuh, crago, dkang, jmcmahon}@isi.edu 

 
 
Introduction1

Stream processing exploits the properties of the stream 
applications such as parallelism and regularity. DARPA’s 
Polymorphous Computing Architectures (PCA) program is 
developing both hardware and software that support stream 
(and thread) processing with a two-level compiler 
infrastructure. The Morphware Forum was formed to 
develop standard software interfaces to promote common 
interfaces and software reuse [2]. The Stream Virtual 
Machine (SVM) framework [1] is the intermediate 
language between the high-level compiler and low-level 
compiler for streaming applications. We implemented a 
library-based version of the SVM for the Raw architecture. 
The Raw SVM library in conjunction with Raw C compiler 
comprises a functional low-level SVM compiler. We 
implemented a matrix multiplication and FIR bank kernel 
using the library and optimization manual optimization to 
identify performance issues surrounding the SVM. 

 

                                                

Stream Virtual Machine and Raw Processor 
The SVM approach consists of a High Level Compiler 
(HLC), Stream Virtual Machine (SVM), and Low Level 
Compiler (LLC). Input to the HLC is a stream program. 
The HLC is responsible for parallelism detection, load 
balancing, coarse-grain scheduling of stream computations, 
and memory management for streaming data [1]. The 
output code from the HLC is based on the SVM API. The 
SVM code is then compiled using the LLC to generate 
binary code for a target platform. The LLC is responsible 
for software pipelining, detailed routing of data items, 
management of instruction memory, and interfacing 
between stream processors and control processors [1]. With 
this approach, when a new language or a new architecture is 
introduced, it can leverage existing software in the HLC or 
LLC. 
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Raw is a research processor chip implemented at MIT [4]. 
The current Raw implementation contains 16 tiles on a chip 
connected by a very low latency 2-D mesh network through 
switch processors.  

Signal Processing Kernels 
Matrix multiplication, C = AB, calculates an output matrix 
C from A and B, where A, B, and C are matrices. We 
implemented a systolic matrix multiplication on Raw. The 
Raw tiles are utilized as shown in Figure 1. The input 
matrix A travels from left to right, and the input matrix B 
matrix travels from top to bottom. The result matrix C is 
sent to the tiles on the right. 

 
Figure 1: Matrix multiplication 

The FIR bank application kernel is part of the kernel 
benchmark suite [2] specified by Lincoln Laboratory the 
PCA program. The FIR bank implements a set of M FIR 
filters and each FIR filter m, m ∈ {0, 1, …, M-1}, has a set 
of impulse response coefficients wm[k], k ∈ {0, … K-1}. It 
is mathematically specified as: 
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The filter computations are distributed over Raw tiles such 
that each processor tile has M/T Filters, where T is the 
number of tiles. Each tile computes its own filters. 
Therefore, there is no communications between tiles. The 
FIR is implemented in the frequency domain because the 
frequency domain computation is more computational 
efficient than the time domain for data sizes. Therefore the 
kernel requires an FFT operation, a complex product, and 
an IFFT operation. The parameters for the results reported 
in this paper are: K=12, N=32, and the length of the input 
data is 1024 complex elements. 

Implementation Results 
We started with C source code compiled using the HLC [3]. 
The output from the HLC was then compiled using the gcc-
based Raw compiler in conjunction with the SVM library 
on Raw. The code was then executed on a Raw prototype 
board. This experiment is the first instance of Morphware 
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software executing on PCA hardware and verified 
functionality of the SVM framework on Raw. However, the 
performance using the full path is not yet meaningful since 
the HLC is still in an early stage of development and focus 
has been on functionality. 

We also implemented the FIR bank in optimized SVM code 
to allow us to understand performance issues of the SVM 
library. Furthermore, we performed several manual 
optimizations on the resulting code. For example, we 
statically assigned communication streams to specific 
networks on Raw to eliminate software overhead for 
managing multiple streams on a network. Another 
optimization is using network ports as direct operands, 
which is allowed on Raw because network ports are 
mapped to registers names to eliminate load and store 
instructions. 

The performance results for matrix multiplication are 
shown in Figure 2. The x-axis is the number of words per 
communication packet and the y-axis is number of cycles 
per multiplication-addition pair. Thus, the lower bound is 
two cycles since each multiplication and addition needs one 
cycle to execute. 
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Figure 2. Matrix multiplication results 

The curve named “SVM Library” shows the performance 
when a full, general implementation of the SVM API is 
used. The curve shows that the initial cost of the 
communication using library approach can be amortized 
over a long sequence of data, although significant overhead 
is still incurred compared to an optimization application 
implementation. The curve named “Hand-optimization” 
shows the performance when several optimizations were 
applied.  The optimized results show that it takes only about 
10% more overhead than the theoretical lower bound. 

The implementation results for the FIR filter are shown in 
Figure 3 and Figure 4. In Figure 3, Lower bound denotes 
the number of cycles per floating point operation per tile 
when only floating-point operations are considered. Since 
each tile can compute one floating-point operation per cycle, 
the lower bound is 1. The “practical” lower bound denotes 
the number of cycles per floating point operations per tile 
when load/store operations are considered as well as the 
number of floating point operations. Note that the load/store 
operations were inevitable in our FIR bank implementation 
that uses Radix-4 FFT. Our results show that the hand-

optimized results are very close to the “practical” lower 
bound with only about 10% overhead. 
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Figure 3. Throughput results for FIR bank (data from cache) 
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Figure 4. Latency results for FIR bank 

Figure 4 shows the effect of accessing data from memory. It 
takes about 16% additional cycles when data is accessed 
from main memory instead of being pre-loaded into the 
local memory. 

Conclusion 
The authors have presented implementation results for the 
SVM library for the Raw processor. The library approach 
enables a full path from a high-level language to the 
processor and a quick validation of the SVM API.  

We applied several manual optimizations to understand the 
performance issues in SVM framework and were able to 
obtain the performance very close to the theoretical peak 
performance of the kernels. We expect similar performance 
improvement can be obtained using optimizations when the 
HLC and LLC are mature enough. 
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