
Pipelined Data Path for an IEEE-754 64-Bit Floating-Point Jacobi Solver
Gerald R. Morris1 and Viktor K. Prasanna2

Department of Electrical Engineering
University of Southern California, Los Angeles, CA

{grm,prasanna}@usc.edu

Abstract

Solving linear equations is essential for certain embedded
applications such as adaptive beam forming and synthetic
aperture radar. When direct methods like Cholesky
factorization are not viable, it becomes necessary to use an
iterative approach. Even when the convergence of the basic
iterative methods like Jacobi or Gauss-Seidel cannot be
guaranteed, they are often used as preconditioners for more
advanced methods like generalized minimum residual
(GMRES) [1]. This paper presents a data path for an
IEEE-754 64-bit floating-point Jacobi iterative solver. The
data path component is written in VHDL; it is deeply
pipelined and parallelized for efficient execution on field-
programmable gate arrays (FPGA). The data path circuit is
implemented using a Xilinx Virtex-II Pro as the target; size,
clock speed, and peak GFLOPS statistics are presented.

Introduction
Within the high performance embedded computing domain,
FPGAs are no longer restricted to their traditional
application space as substitutes for application-specific
integrated circuits (ASIC). Contemporary research spans a
broad range of topics such as application design and
synthesis [2], benchmarking [3], variable-precision
floating-point operations [4], and higher radix floating-
point representations [5]. The mega gate counts, arithmetic
capability, and other features of modern FPGAs have
precipitated research into general-purpose linear algebra
routines [6], as well as floating-point kernels from specific
problem domains such as molecular dynamics [7]. FPGAs
may soon have an order of magnitude peak floating-point
performance over general-purpose processors [8]. SRC,
Inc., offers a compact, high-end embedded computer that
has FPGA-based acceleration capability [9]. FPGA-based
floating-point computational kernels are becoming a reality
within the high performance embedded computing domain.

The Jacobi Iterative Method
The Jacobi iterative method for solving Ax = b involves
splitting n × n matrix, A, into lower triangular, upper
triangular, and diagonal matrices and casting the resulting
equation in the form of an iteration, x(δ+1) ⇐ f(x(δ)), where δ
is the iteration index. Plugging A = L + U + D into Ax = b
yields the vector form of the Jacobi iteration:

())11)((δ)(δ ULD xbx +−⇐ −+ (1)

 1 Supported in part by the DoD High Performance Computing
Modernization Program (HPCMP).

The Jacobi iteration can also be expressed in point form:

 1
|1

)(1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⇐ ∑

≠=

+
n

ijj
jiji

ii

)(δ
i xab

a
x δ (2)

Equation 2 can be trivially vectorized “since the updates
could in principle be done simultaneously” [10]. As such, it
is an ideal candidate for implementation within an FPGA.

Design

To motivate the discussion, there is a simplified block
diagram of the complete Jacobi iterative solver shown in
Figure 1. This paper presents the design of the binary tree
data path shown in the center of the figure. For simplicity,
a data path width, k = 4, is shown.

Figure 1: Jacobi Iteration Block Diagram

During initialization, the b and x(δ) vectors are stored
internally. Then, the first k-vector (a subrow) of row a1 is
read in and held at the multiplier inputs along with the
corresponding k-vector of x(δ) that was fetched from
storage. On the next clock, the pipeline ingests the next
subrow of a1, and so forth until the entire row has been
dispatched. At this point, row a2 begins to enter the data
path, etc., until all rows of A are processed. The binary tree
reduces the input k-vectors and emits one partial value per
clock. The partial sums for row i are accumulated by the
reduce circuit to generate the Equation 2 summation. This
sum is subtracted from bi and the result is fed into the
multiplier with 1/aii to produce xi

(δ+1). Counter i controls
the data path and sets aiixi

(δ) = 0; i also selects the aii values
into the divider, the bi values into the subtracter, and tells
reduce when a new row has started. Counter j ensures that
the proper k-vector is read from the x(δ) store.

 2 Supported by the United States National Science Foundation under
award No. CCR-0311823 and in part by award No. ACI-0305763.

Two reduce circuits are presented in [11], the subrow
approach is in [6], and the floating-point units (FPU) are
described in [12]. This paper presents the binary tree data
path. One of the challenges of testing the data path design
was that the tools do not support IEEE-754 representation.
Scrofano's float2hex, and hex2float utilities [7] were
modified to generate test vectors for the ModelSim VHDL
testbench codes.

Experiments
Using the Xilinx ISE 6.3.03, Synplicity Synplify Pro 7.7.1,
and Model Technology ModelSim XE II 5.8c development
tools, with Xilinx Virtex-II Pro as target devices, the data
paths were implemented in VHDL. Because of I/O and
slice limitations, k = 8 is the widest data path that fits on the
targets (k = 16 will almost fit on the xc2vp100). Extensive
optimizations such as reentrant routing and floor planning
were not used. A 10 ns timing constraint was placed at the
top of the design hierarchy. The elided ModelSim diagram
in Figure 2 shows a latency of 52 clock cycles, which is
consistent with the analytical result: 10 cycles for the
multiplier stage, and 14 cycles for each of the lg(k) adder
stages. Each k-vector in a1 and the corresponding k-vector
in x(δ) results in a single tree output value. If the tree output
values are added together, one gets the desired summation.

Figure 2: Latency

Xilinx place and route reports show the data path has the
size and clock speed characteristics listed in Table 1.

Table 1: Place & Route Statistics

device n I/O slices clk

xc2vp100-6 8 581 20527 9.351 ns

xc2vp70-6 8 581 20188 9.696 ns

If the vector length, n >> k, then the pipeline latency can be
ignored when calculating peak GFLOPS. There are k
multipliers, and k - 1 adders. This corresponds to 15 IEEE
64-bit floating-point operations per clock cycle. The data
path can run at 9.35 ns, so there is a peak rating of 1.60

GFLOPS for the given technology. As larger and faster
FPGAs are available, this number will rise.

Future Work
Design a complete Jacobi iteration circuit using a subrow
design as in [6], coupled with the reduction techniques
described in [11]. Design a large sparse matrix version.

Acknowledgments
The authors thank HPCMP computational scientists Tom
Oppe, Bill Ward, and Alvaro Fernandez for clarifying some
theoretical issues. The authors also thank Ron Scrofano for
his float2hex and hex2float utilities.

References
[1] Y. Saad, Iterative Methods for Sparse Linear Systems.

Boston: PWS Publishing Company, 1985.

[2] J. Frigo, M. Gokhale, and D. Lavenier, “Evaluation of the
streams-C C-to-FPGA compiler: an applications
perspective,” 2001 ACM/SIGDA 9th International
Symposium on Field Programmable Gate Arrays, Feb 2001.

[3] S. Kumar, L. Pires, S. Ponnuswamy, C. Nanavati, J. Golusky,
M. Vojta, S. Wadi, D. Pandalai, and H. Spaanenberg, “A
benchmark suite for evaluating configurable computing
systems—status, reflections, and future directions,” 2005
ACM/SIGDA 13th International Symposium on Field-
Programmable Gate Arrays, Feb 2005.

[4] M. Leeser and X. Wang, “Variable precision floating-point
division and square root,” 8th Annual High Performance
Embedded Computing Workshop, Sep 2004.

[5] B. Catanzaro and B. Nelson, “Higher radix floating-point
representations for FPGA-based arithmetic,” 13th IEEE
Symposium on Field-Programmable Custom Computing
Machines, Apr 2005.

[6] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector
multiplication on FPGAs,” 2005 ACM/SIGDA 13th
International Symposium on Field-Programmable Gate
Arrays, Feb 2005.

[7] R. Scrofano and V. K. Prasanna, “Computing Lennard-Jones
potentials and forces with reconfigurable hardware,”
International Conference on Engineering Reconfigurable
Systems and Algorithms, Jun 2004.

[8] K. Underwood, “FPGAs vs. CPUs: Trends in peak floating-
point performance,” 2004 ACM/SIGDA 12th International
Symposium on Field Programmable Gate Arrays, Feb 2004.

[9] SRC Computers, Inc., http://www.srccomp.com

[10] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J.
Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der
Vorst, Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition, SIAM, 1994.

[11] G. R. Morris, L. Zhuo, and V. K. Prasanna, “High-
performance FPGA-based general reduction methods,” 13th
IEEE Symposium on Field-Programmable Custom
Computing Machines, Apr 2005.

[12] G. Govindu, L. Zhuo, S. Choi, and V. K. Prasanna, “Analysis
of high-performance floating-point arithmetic on FPGAs,”
11th Reconfigurable Architectures Workshop, Apr 2004.

