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Abstract 

Solving linear equations is essential for certain embedded 
applications such as adaptive beam forming and synthetic 
aperture radar.  When direct methods like Cholesky 
factorization are not viable, it becomes necessary to use an 
iterative approach.  Even when the convergence of the basic 
iterative methods like Jacobi or Gauss-Seidel cannot be 
guaranteed, they are often used as preconditioners for more 
advanced methods like generalized minimum residual 
(GMRES) [1].  This paper presents a data path for an 
IEEE-754 64-bit floating-point Jacobi iterative solver.  The 
data path component is written in VHDL; it is deeply 
pipelined and parallelized for efficient execution on field-
programmable gate arrays (FPGA).  The data path circuit is 
implemented using a Xilinx Virtex-II Pro as the target; size, 
clock speed, and peak GFLOPS statistics are presented. 

Introduction 
Within the high performance embedded computing domain, 
FPGAs are no longer restricted to their traditional 
application space as substitutes for application-specific 
integrated circuits (ASIC).  Contemporary research spans a 
broad range of topics such as application design and 
synthesis [2], benchmarking [3], variable-precision 
floating-point operations [4], and higher radix floating-
point representations [5].  The mega gate counts, arithmetic 
capability, and other features of modern FPGAs have 
precipitated research into general-purpose linear algebra 
routines [6], as well as floating-point kernels from specific 
problem domains such as molecular dynamics [7].  FPGAs 
may soon have an order of magnitude peak floating-point 
performance over general-purpose processors [8].  SRC, 
Inc., offers a compact, high-end embedded computer that 
has FPGA-based acceleration capability [9].  FPGA-based 
floating-point computational kernels are becoming a reality 
within the high performance embedded computing domain. 

The Jacobi Iterative Method 
The Jacobi iterative method for solving Ax = b involves 
splitting n × n matrix, A, into lower triangular, upper 
triangular, and diagonal matrices and casting the resulting 
equation in the form of an iteration, x(δ+1) ⇐ f(x(δ)), where δ 
is the iteration index.  Plugging A = L + U + D into Ax = b 
yields the vector form of the Jacobi iteration: 
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The Jacobi iteration can also be expressed in point form: 
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Equation 2 can be trivially vectorized “since the updates 
could in principle be done simultaneously” [10].  As such, it 
is an ideal candidate for implementation within an FPGA. 

Design 

To motivate the discussion, there is a simplified block 
diagram of the complete Jacobi iterative solver shown in 
Figure 1.  This paper presents the design of the binary tree 
data path shown in the center of the figure.  For simplicity, 
a data path width, k = 4, is shown. 

 
Figure 1: Jacobi Iteration Block Diagram 

During initialization, the b and x(δ) vectors are stored 
internally.  Then, the first k-vector (a subrow) of row a1 is 
read in and held at the multiplier inputs along with the 
corresponding k-vector of x(δ) that was fetched from 
storage.  On the next clock, the pipeline ingests the next 
subrow of a1, and so forth until the entire row has been 
dispatched.  At this point, row a2 begins to enter the data 
path, etc., until all rows of A are processed.  The binary tree 
reduces the input k-vectors and emits one partial value per 
clock.  The partial sums for row i are accumulated by the 
reduce circuit to generate the Equation 2 summation.  This 
sum is subtracted from bi and the result is fed into the 
multiplier with 1/aii to produce xi

(δ+1).  Counter i controls 
the data path and sets aiixi

(δ) = 0; i also selects the aii values 
into the divider, the bi values into the subtracter, and tells 
reduce when a new row has started.  Counter j ensures that 
the proper k-vector is read from the x(δ) store. 

                                                 
 2 Supported by the United States National Science Foundation under 
award No. CCR-0311823 and in part by award No. ACI-0305763. 



Two reduce circuits are presented in [11], the subrow 
approach is in [6], and the floating-point units (FPU) are 
described in [12].  This paper presents the binary tree data 
path.  One of the challenges of testing the data path design 
was that the tools do not support IEEE-754 representation.  
Scrofano's float2hex, and hex2float utilities [7] were 
modified to generate test vectors for the ModelSim VHDL 
testbench codes. 

Experiments 
Using the Xilinx ISE 6.3.03, Synplicity Synplify Pro 7.7.1, 
and Model Technology ModelSim XE II 5.8c development 
tools, with Xilinx Virtex-II Pro as target devices, the data 
paths were implemented in VHDL.  Because of I/O and 
slice limitations, k = 8 is the widest data path that fits on the 
targets (k = 16 will almost fit on the xc2vp100).  Extensive 
optimizations such as reentrant routing and floor planning 
were not used.  A 10 ns timing constraint was placed at the 
top of the design hierarchy.  The elided ModelSim diagram 
in Figure 2 shows a latency of 52 clock cycles, which is 
consistent with the analytical result: 10 cycles for the 
multiplier stage, and 14 cycles for each of the lg(k) adder 
stages.  Each k-vector in a1 and the corresponding k-vector 
in x(δ) results in a single tree output value.  If the tree output 
values are added together, one gets the desired summation. 

 
Figure 2: Latency 

Xilinx place and route reports show the data path has the 
size and clock speed characteristics listed in Table 1. 

Table 1: Place & Route Statistics 

device n I/O slices clk 

xc2vp100-6 8 581 20527 9.351 ns 

xc2vp70-6 8 581 20188 9.696 ns 

 

If the vector length, n >> k, then the pipeline latency can be 
ignored when calculating peak GFLOPS.  There are k 
multipliers, and k - 1 adders.  This corresponds to 15 IEEE 
64-bit floating-point operations per clock cycle.  The data 
path can run at 9.35 ns, so there is a peak rating of 1.60 

GFLOPS for the given technology.  As larger and faster 
FPGAs are available, this number will rise. 

Future Work 
Design a complete Jacobi iteration circuit using a subrow 
design as in [6], coupled with the reduction techniques 
described in [11].  Design a large sparse matrix version. 
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