
High-Performance FPGA-Based QR Decomposition
Huy Nguyen, James Haupt, Michael Eskowitz, Birol Bekirov, Jonathan Scalera,

Thomas Anderson, Michael Vai, Kenneth Teitelbaum
MIT Lincoln Laboratory

Email: hnguyen@ll.mit.edu

Introduction
This paper discusses two high-performance
implementations of QR decomposition suitable for
demanding adaptive beamforming radar applications, where
both processing throughput and latency are important. In a
beamforming application, the radar typically collects a
small set of samples in training mode to build an internal
mathematical model of the environment. The adaptive
weights are then computed from the model using the QR
decomposition process in a split-second time frame. Then,
in radar processing mode, the weights are applied to real-
time data streaming through at very high rate.

The QR decomposition and weight computation described
in this paper are implemented in the same FPGA that
performs beamforming operation rather than in an external
microprocessor as in conventional approaches. This
integration eliminates off-chip communication in accessing
training samples and updating beamforming weights.

The first QR decomposition implementation features a
software-oriented approach, where a 32-bit microprocessor
soft-core (Xilinx MicroBlaze) is built from random FPGA
logic gates to run a C program that implements the
McWhirther systolic array. The program is kept short to fit
entirely inside the FPGA limited on-chip memory so that no
external memory is needed.

The second design features a hardware massively parallel
approach, utilizing a novel architecture that combines the
McWhirter algorithm [Song] with a linear folded systolic
structure [Walke] that operates with 100% processor
efficiency. The folded linear structure enables the FPGA to
implement large arrays in time-slice fashion with up to 50%
less resources compared to the triangle array structure. To
boost throughput, computation of 1/sqrt() in the McWhirter
array is implemented with a non-recursive table-based
approach so that no iterative computation is required, which
allows the array to be fully pipelined and potentially
increases throughput several times over a previous
recursive-based implementation [Song].

QR Decomposition
QR decomposition is a mathematical process to decompose
a matrix X into a product of two component matrices Q and
R such that X = Q * R, where Q is orthonormal (QH *Q =
identity matrix) and R is upper triangular (all elements
below the diagonal are zeros). The upper triangular
provides a very efficient way of inverting R by back
substitution rather than full Gaussian elimination.

In many applications, a covariance matrix, C, is formed as
C = XH *X to estimate statistical correlation relationship
among several random variables whose snapshots are
contained in the measurement matrix, X. We are interested

in computing the inverse of the covariance matrix, C-1,
which is not trivial for a large matrix C. However, by
expressing X in term of Q and R, it is possible to reduce the
computation complexity significantly.

C = XH * X
 = (Q * R) H *(Q *R) = RH * QH * Q * R
 = RH * R

Thus, C-1 can be found by
 C-1 = R-1H * R-1,
where R-1 can be computed efficiently from R, which is
obtained from the QR decomposition of measurements X.

McWhirter Array
There are many ways of performing QR decomposition.
Software-based implementations often favor Householder
algorithm, which works well for centralized memory
storage and accessing. Parallel processing implementations,
however, require the data to be distributed throughout
different processing units to support parallel execution.
McWhirter array is a distributed processing algorithm that
only requires near-neighbor data communication. Figure 1
shows the signal flow-graph of the McWhirter algorithm.

Figure 1: McWhirter Systolic Array Algorithm

Computation of 1/sqrt(A)
Most of the computations involved in the McWhirter array
are rather simple, except for sqrt(A) and 1/sqrt(A). Note
that since the quantity sqrt(A) can be obtained by a simple
multiplication A * 1/sqrt(A), we only need to do one
difficult computation, i.e., 1/sqrt(A).

In [Song], Newton’s iterative approximation was used to
compute 1/sqrt(A). It typically takes 3-5 iteration loops to
converge to a 19-bit precision value. While simple to
implement, this approach does not allow the processing
node to be pipelined because of the iteration loop.

To enable pipelining, we introduced a new piece-wise
linear approximation approach. The entire input space is
divided into many segments, each is associated with a set of

)(0 ns

)(0 nc
)(00 nr

)(1 ns

)(1 nc

)(2 ns

)(2 nc

Results ri j(n)
computed and
stored at array nodes

Input sample vector

)(02 nr)(03 nr)(01 nr

)(12 nr)(13 nr)(11 nr

)(23 nr

)(33 nr

)(22 nr

)(00 nx)(01 nx)(02 nx)(03 nx

)(11 nx)(12 nx)(13 nx

)(22 nx)(23 nx

)(33 nx

)(0 nX)(2 nX)(3 nX)(1 nX

⎪⎩

⎪
⎨
⎧

≠
==
ji
jirij 0

)0(α

Anxnrnr iiiiii =+−=
2

,
2)()1()(

)1(*1
)(

)1()(−=
−

= nr
Anr

nrnc ii
ii

ii
i

)(*1
)(
)()(nx

Anr
nxns ii

ii

ii
i ==

)()1()(nxsnrcnr ijiiij
∗+−=

)()1()(,,1 nxcnrsnx jiiijiji +−−=+

*This work is sponsored by Defense Advanced Research Projects Agency, under Air Force Contract FA8721-05-C-0002. Opinions,
interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

two parameters, namely slope and offset, for a linear
approximation of 1/sqrt(A) within the segment. The number
of segments required is based on the desired level of the
error. The two parameters are stored in two tables indexed
based on A. With some optimization, 1/sqrt(A) uses only a
fraction of the logic and memory in the FPGA.

Software-Oriented Implementation
We set out to explore the maturity of the FPGA embedded
processor technology. As a pilot project, we implemented
the McWhirter array in C and ported that to a Microblaze
soft-core made up from random logic in the FPGA.

There were several tool and development board related
issues, but within one month and a half, we were able to get
the QR decomposition running on the Microblaze, with
clock rate was in excess of 100 MHz. The program used
floating-point variables to obtain high precision, one
advantage of using C. Although a floating-point library was
available, we coded up our own 1/sqrt() function based on a
fast routine used in the game Quake3 by Carmack. This
resulted in a speed up of 4 over the standard C call to sqrt().

Beside the full software implementation, we also explored
different software-hardware trade-off levels, such as the
FPGA logic gates to implement the “internal nodes” which
perform only simple computation (square node in Figure 1),
leaving the “boundary nodes” with 1/sqrt(A) to the
processor. Since there are many internal nodes, the
parallelization boosts up the throughput significantly.

Hardware-Array Implementation
The McWhirter algorithm has a triangle signal flow-graph,
but unfortunately it is often not possible to implement the
full triangle in a FPGA because of resource limitation. The
straight-forward choice is to implement only the first row,
and re-use it to perform the computation in the other rows
as we step through the array schedule. Unfortunately, this
approach results in many nodes idling when used on the
lower rows of the array, bringing overall efficiency to about
50%. A mapping proposed by [Walke] folds the array such
that two datagrams are overlapped at one time, allowing the
idle processors to operate on the 2nd datagram while the first
is till in process. This results in 100% efficiency.

Firgure 2 shows the McWhirter array with node indexing
that indicates the order of processing. The mapping requires
that the number of internal nodes be even, so a dummy
internal column has been added. The two extra columns on
the right are for computing adaptive weight vectors using
the same array in back-substitution.

Figure 2: Triangle Array Schedule

Figure 3 shows the folded array, where the execution of the
green datagram is overlapped with the brown from the
previous time frame, and orange from the next time frame.

1,1

2,2

4,4

3,2

5,5

3,3

4,1

3,1

2,1

5,2

5,1

7,1 6,1

5,4

5,3

4,3

4,2

7,4 6,4

7,3 6,3

7,2 6,2

7,5 6,5

4,4

1,1

5,4

3,3

2,1

3,1

4,13,2

4,25,1

6,17,1

6,27,2

6,37,3 5,24,3

5,3

7,4 6,4

6,57,5

Figure 3: Folded Linear Array Schedule

Figure 4 shows a set of processors to implement one time-
slice of the folded array schedule. The multiplexers are
used to change the red data path from one schedule step to
the next. Note that we only use Walke’s folded array
mapping, but not his computation nodes.

Figure 4: Linear Array Processors

Conclusion
We have presented two implementation of the QR
decomposition process. One implementation is software
based, using the 32-bit microprocessor made from random
logic in the FPGA. This approach is simple, since most
mathematical functions come with a standard C compiler.
The 2nd implementation is a massively parallel hardware
array with 100% processor utilization. This implementation
is suitable for deep-pipelining to the clock level (as opposed
to just schedule level as in [Song]).

With the slowing of Moore’s law, performance
improvement cannot be bet on clock rate doubling every 1.5
years. Rather, more novel algorithms and architectures will
be needed to improve throughput. An optimized system is
costly in terms of development and debugging. We see the
use of the embedded microprocessor in the FPGA as a great
help for developing complex FPGA-based systems.

References
[Eskowitz] Eskowitz, M., Gleyzer, V., Haupt, J., Mirhosseini, R.,

“Adaptive Beamforming Using FPGA Embedded
Microprocessors,” Major Qualifying Project Report,
Worcester Polytechnic Institute, 2004.

[Song] Song, W.S, Rabinkin, D.V., Vai, M.M., Nguyen, H.T.,
“VLSI Bit-Level Systolic Sample Matrix Inversion,” MIT
Lincoln Laboratory Report NTP-2, 2001.

[Walke] Walke, R., “Adaptive Beamforming Using QR in
FPGA,” High Performance Embedded Computing
Workshop, 2002.

X(k+1)

5,5

2,2

X(k)

Z(k)

Z(k-1)

1,1 3,1 4,12,1 5,1 6,1 7,1

3,3 4,3

2,2

5,3 6,3 7,3

3,2 4,2 5,2 6,2 7,2

5,5 6,5 7,5

4,4 5,4 6,4 7,4

000

0 0

Z

X(k,1)

En

X(k,2)
X(k,3)
X

0
(k,4)

