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Introduction 
This paper discusses two high-performance 
implementations of QR decomposition suitable for 
demanding adaptive beamforming radar applications, where 
both processing throughput and latency are important.  In a 
beamforming application, the radar typically collects a 
small set of samples in training mode to build an internal 
mathematical model of the environment.  The adaptive 
weights are then computed from the model using the QR 
decomposition process in a split-second time frame.  Then, 
in radar processing mode, the weights are applied to real-
time data streaming through at very high rate.  

The QR decomposition and weight computation described 
in this paper are implemented in the same FPGA that 
performs beamforming operation rather than in an external 
microprocessor as in conventional approaches. This 
integration eliminates off-chip communication in accessing 
training samples and updating beamforming weights. 

The first QR decomposition implementation features a 
software-oriented approach, where a 32-bit microprocessor 
soft-core (Xilinx MicroBlaze) is built from random FPGA 
logic gates to run a C program that implements the 
McWhirther systolic array.  The program is kept short to fit 
entirely inside the FPGA limited on-chip memory so that no 
external memory is needed.  

The second design features a hardware massively parallel 
approach, utilizing a novel architecture that combines the 
McWhirter algorithm [Song] with a linear folded systolic 
structure [Walke] that operates with 100% processor 
efficiency. The folded linear structure enables the FPGA to 
implement large arrays in time-slice fashion with up to 50% 
less resources compared to the triangle array structure. To 
boost throughput, computation of 1/sqrt() in the McWhirter 
array is implemented with a non-recursive table-based 
approach so that no iterative computation is required, which 
allows the array to be fully pipelined and potentially 
increases throughput several times over a previous 
recursive-based implementation [Song]. 

QR Decomposition 
QR decomposition is a mathematical process to decompose 
a matrix X into a product of two component matrices Q and 
R such that X = Q * R, where Q is orthonormal (QH *Q = 
identity matrix) and R is upper triangular (all elements 
below the diagonal are zeros).  The upper triangular 
provides a very efficient way of inverting R by back 
substitution rather than full Gaussian elimination. 

In many applications, a covariance matrix, C, is formed as 
C = XH *X to estimate statistical correlation relationship 
among several random variables whose snapshots are 
contained in the measurement matrix, X. We are interested 

in computing the inverse of the covariance matrix, C-1, 
which is not trivial for a large matrix C.  However, by 
expressing X in term of Q and R, it is possible to reduce the 
computation complexity significantly.  

C = XH * X 
    = (Q * R) H *(Q *R) = RH * QH * Q * R  
    = RH * R 

Thus, C-1 can be found by 
              C-1 = R-1H * R-1, 
where R-1 can be computed efficiently from R, which is 
obtained from the QR decomposition of measurements X. 

McWhirter Array 
There are many ways of performing QR decomposition.  
Software-based implementations often favor Householder 
algorithm, which works well for centralized memory 
storage and accessing. Parallel processing implementations, 
however, require the data to be distributed throughout 
different processing units to support parallel execution.  
McWhirter array is a distributed processing algorithm that 
only requires near-neighbor data communication. Figure 1 
shows the signal flow-graph of the McWhirter algorithm. 

 
Figure 1: McWhirter Systolic Array Algorithm 

Computation of 1/sqrt(A) 
Most of the computations involved in the McWhirter array 
are rather simple, except for sqrt(A) and 1/sqrt(A).  Note 
that since the quantity sqrt(A) can be obtained by a simple 
multiplication A * 1/sqrt(A), we only need to do one 
difficult computation, i.e., 1/sqrt(A). 

In [Song], Newton’s iterative approximation was used to 
compute 1/sqrt(A). It typically takes 3-5 iteration loops to 
converge to a 19-bit precision value. While simple to 
implement, this approach does not allow the processing 
node to be pipelined because of the iteration loop. 

To enable pipelining, we introduced a new piece-wise 
linear approximation approach.  The entire input space is 
divided into many segments, each is associated with a set of 
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two parameters, namely slope and offset, for a linear 
approximation of 1/sqrt(A) within the segment. The number 
of segments required is based on the desired level of the 
error.  The two parameters are stored in two tables indexed 
based on A.  With some optimization, 1/sqrt(A) uses only a 
fraction of the logic and memory in the FPGA. 

Software-Oriented Implementation 
We set out to explore the maturity of the FPGA embedded 
processor technology.  As a pilot project, we implemented 
the McWhirter array in C and ported that to a Microblaze 
soft-core made up from random logic in the FPGA.  

There were several tool and development board related 
issues, but within one month and a half, we were able to get 
the QR decomposition running on the Microblaze, with 
clock rate was in excess of 100 MHz. The program used 
floating-point variables to obtain high precision, one 
advantage of using C. Although a floating-point library was 
available, we coded up our own 1/sqrt() function based on a 
fast routine used in the game Quake3 by Carmack.  This 
resulted in a speed up of 4 over the standard C call to sqrt(). 

Beside the full software implementation, we also explored 
different software-hardware trade-off levels, such as the 
FPGA logic gates to implement the “internal nodes” which 
perform only simple computation (square node in Figure 1), 
leaving the “boundary nodes” with 1/sqrt(A) to the 
processor.  Since there are many internal nodes, the 
parallelization boosts up the throughput significantly.  

Hardware-Array Implementation 
The McWhirter algorithm has a triangle signal flow-graph, 
but unfortunately it is often not possible to implement the 
full triangle in a FPGA because of resource limitation.  The 
straight-forward choice is to implement only the first row, 
and re-use it to perform the computation in the other rows 
as we step through the array schedule. Unfortunately, this 
approach results in many nodes idling when used on the 
lower rows of the array, bringing overall efficiency to about 
50%. A mapping proposed by [Walke] folds the array such 
that two datagrams are overlapped at one time, allowing the 
idle processors to operate on the 2nd datagram while the first 
is till in process. This results in 100% efficiency. 

Firgure 2 shows the McWhirter array with node indexing 
that indicates the order of processing. The mapping requires 
that the number of internal nodes be even, so a dummy 
internal column has been added.  The two extra columns on 
the right are for computing adaptive weight vectors using 
the same array in back-substitution.  

 
Figure 2: Triangle Array Schedule 

Figure 3 shows the folded array, where the execution of the 
green datagram is overlapped with the brown from the 
previous time frame, and orange from the next time frame. 
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Figure 3: Folded Linear Array Schedule 

Figure 4 shows a set of processors to implement one time-
slice of the folded array schedule.  The multiplexers are 
used to change the red data path from one schedule step to 
the next. Note that we only use Walke’s folded array 
mapping, but not his computation nodes.  

 
Figure 4: Linear Array Processors 

Conclusion 
We have presented two implementation of the QR 
decomposition process.  One implementation is software 
based, using the 32-bit microprocessor made from random 
logic in the FPGA.  This approach is simple, since most 
mathematical functions come with a standard C compiler.  
The 2nd implementation is a massively parallel hardware 
array with 100% processor utilization. This implementation 
is suitable for deep-pipelining to the clock level (as opposed 
to just schedule level as in [Song]). 

With the slowing of Moore’s law, performance 
improvement cannot be bet on clock rate doubling every 1.5 
years.  Rather, more novel algorithms and architectures will 
be needed to improve throughput. An optimized system is 
costly in terms of development and debugging. We see the 
use of the embedded microprocessor in the FPGA as a great 
help for developing complex FPGA-based systems. 
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