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Abstract1

This paper introduces an embedded hybrid processor that 
increases performance by more than an order of magnitude 
while also reducing power consumption by a similar 
amount, even at the higher performance. This is achieved 
by moving key software functions into hardware through an 
automated process.    These functions are labeled hardware 
functions and are controlled by the software processor.  
Specialized dual-ported memories are used to enable data 
sharing between the software processor and the hardware 
functions so that there is no overhead associated with 
calling the hardware functions.  Adding hardware functions 
resulted in dramatically improved performance and reduced 
energy consumption.  

Our processor has been synthesized for 160nm standard cell 
ASIC fabrication process from OKI and for a 90nm Stratix 
II FPGA with a core operating frequency of 167 MHz for 
both technologies. We present multimedia and signal 
processing benchmarks that show kernel performance 
improvements over a single processor ranging from 9X to 
332X, and entire application speedups ranging from 4X to 
127X.  Hardware functions also provide many orders of 
magnitude of power improvement for the computational 
kernels, ranging from 42X to over 418X.  

Introduction 
The work described herein studies the performance gains, 
power and energy savings of a heterogeneous multi-core 
embedded processor that combines a very-long instruction 
word (VLIW) processor with application-specific, 
combinational-logic hardware functions.  The constituent 
cores share a register file without a bus and associated 
overhead.  C-code benchmarks from the Mediabench set 
have been selected to test the architecture. The addition of 
hardware functions lends power and performance 
improvements due three main effects: (1) predicated 
control flow (2) cycle compression and (3) power 
compression.  Dedicated hardware lends efficiency to 
branching structures and specialized computations that 
become predicated control flow and cycle compression.  
Power compression is an effect from reducing the 
functionality from a general purpose arithmetic logic unit 
(ALU) to application specific functional units. This idea is 
expanded to take advantage of power-optimized, general 
purpose ALUs.  
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Architecture Description 
In order to provide a realistic baseline processor design, we 
selected the 32-bit Nios II processor from the Altera 
Corporation that targets Altera devices.  Our processor has 
an identical instruction set architecture but has been 
custom-designed to seamlessly integrate to the hardware 
functions.  We extended the processor core to a 6-stage 
pipelined VLIW processor with four fully functional 
processing elements.  The architectural overview is shown 
in Figure 1 and is described in greater detail in [1], [2]. 

We selected the Altera Stratix II EP2S180F1508C4 FPGA 
with a maximum internal clock rate of 420 MHz as our 
target device. The EP2S180F has 768 9-bit embedded 
multiply-accumulate ASIC cells and 1.2 MB of internal 
memory. After iterative optimizations to the critical path, 
the clock rate reached its present 4-wide VLIW rate of 
167MHz. 

 
Figure 1: VLIW processor architecture with application 

specific, combinational hardware functions. 

To achieve dramatic performance increases, we observe 
that hardware typically executes over 10x faster than 
software for the same functionality using the same 
fabrication technology.  We also observe that computational 
portions of a typical processor consume a very small 
percentage of the processor area and an even smaller 
portion of an FPGA or ASIC.  It is not possible to move 
entire software applications into hardware but fortunately, 
the 90/10 rule states that 90% of a programs execution is 
spent in only 10% of its code.  Thus, we move the 
performance-critical kernels into hardware and execute the 
remaining code in software. 



Through profiling, the software kernels are identified and 
converted into hardware functions.  The hardware functions 
are strictly combinational logic and do not contain any 
internal data storage.  Data is stored in the shared register 
file or in shared memory, accessible to both the processor 
and the hardware functions.  The program execution is 
controlled by a shared instruction decoder that orders the 
execution of both software and hardware.  

 
In software, an if-then-else statement is implemented in no 
less than six assembly instructions and stalls the processor 
pipeline when branch prediction misses. By converting 
forward-branching control flow into hardware functions, we 
increase the size of the hardware functions and dramatically 
improve performance.  Thus, complex decisions execute 
using efficient combinational hardware rather than 
inefficient software branching.  Push-button hardware 
synthesis tools produced hardware functions that performed 
significantly faster than we estimated.   

Two additional benefits of the combinational hardware 
functions are cycle compression and power compression.  
All software instructions consume one or more cycles.  
However, from our experiments, the average computation 
requires less than 40% of cycle time when implemented in 

hardware.  Similarly, the power consu
compared to software for the same ope
concept we call power compression.  F
consumption for various arithmetic
designs with simplest hardware units li

 

Results 
All of our Mediabench benchmarks 
limited instruction level parallelism 
kernel and non-kernel portions of the
“ideal” software speedup was < 2 
software kernels into hardware fun
gains that exceed parallelism.  Th

targeting our architecture is described in detail in [1], [2]. 
For the FPGA-based implementation, we used Synplify Pro 
synthesis with Quartus II place-and-route software.  For 
ASIC implementation, we used Design Compiler synthesis 
for 160 nm OKI standard cells. Functional simulations were 
done in ModelSim and power estimations for the ASIC 
implementation were generated from PrimePower. 

Table 1 provides a summary of the performance results of a 
variety of architectural choices.  Hardware functions 
provides nearly 10X to over 200X speedups over a single 
processor implementation for application speedups ranging 
nearly 3X to over 25X [2]. Due to limited ILP, the 4-way 
processor provides only nominal speedups ranging from 
1.02X to 1.48X. An unlimited-way VLIW is able to achieve 
only slight improvements over the 4-way VLIW. However, 
when the VLIW processor is combined with hardware 
functions, the speedup improves to a range from 4X to over 
30X.  The energy and power required for a computation 
kernel to complete within a hardware function compared to 
the VLIW processor is shown in Table 2.  Results show a 
power improvement ranging from just under 50X to over 
400X, with an average improvement of 130X.   

Table 2: Performance results 

 
In conclusion, the results of our test show that by moving 
software kernels into hardware functions, we gain between 
9X and 332X in performance for the kernels and between 
4X and 127X in performance for the entire benchmark. 
Given standard cell implementation, power reduction from 
42X to 418X is achieved with average savings of 133X.  
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