
A VLIW Processor with Hardware Functions:
Increasing Performance While Reducing Power

Raymond Hoare, Alex K. Jones, Dara Kusic, Joshua Fazekas, Gayatri Mehta and John Foster
Department of Electrical and Computer Engineering, University of Pittsburgh

{hoare, akjones}@ece.pitt.edu

Abstract1

This paper introduces an embedded hybrid processor that
increases performance by more than an order of magnitude
while also reducing power consumption by a similar
amount, even at the higher performance. This is achieved
by moving key software functions into hardware through an
automated process. These functions are labeled hardware
functions and are controlled by the software processor.
Specialized dual-ported memories are used to enable data
sharing between the software processor and the hardware
functions so that there is no overhead associated with
calling the hardware functions. Adding hardware functions
resulted in dramatically improved performance and reduced
energy consumption.

Our processor has been synthesized for 160nm standard cell
ASIC fabrication process from OKI and for a 90nm Stratix
II FPGA with a core operating frequency of 167 MHz for
both technologies. We present multimedia and signal
processing benchmarks that show kernel performance
improvements over a single processor ranging from 9X to
332X, and entire application speedups ranging from 4X to
127X. Hardware functions also provide many orders of
magnitude of power improvement for the computational
kernels, ranging from 42X to over 418X.

Introduction
The work described herein studies the performance gains,
power and energy savings of a heterogeneous multi-core
embedded processor that combines a very-long instruction
word (VLIW) processor with application-specific,
combinational-logic hardware functions. The constituent
cores share a register file without a bus and associated
overhead. C-code benchmarks from the Mediabench set
have been selected to test the architecture. The addition of
hardware functions lends power and performance
improvements due three main effects: (1) predicated
control flow (2) cycle compression and (3) power
compression. Dedicated hardware lends efficiency to
branching structures and specialized computations that
become predicated control flow and cycle compression.
Power compression is an effect from reducing the
functionality from a general purpose arithmetic logic unit
(ALU) to application specific functional units. This idea is
expanded to take advantage of power-optimized, general
purpose ALUs.

This work partially supported by the Swanson Center for Micro and Nano
Systems and the Technology Collaborative.

Architecture Description
In order to provide a realistic baseline processor design, we
selected the 32-bit Nios II processor from the Altera
Corporation that targets Altera devices. Our processor has
an identical instruction set architecture but has been
custom-designed to seamlessly integrate to the hardware
functions. We extended the processor core to a 6-stage
pipelined VLIW processor with four fully functional
processing elements. The architectural overview is shown
in Figure 1 and is described in greater detail in [1], [2].

We selected the Altera Stratix II EP2S180F1508C4 FPGA
with a maximum internal clock rate of 420 MHz as our
target device. The EP2S180F has 768 9-bit embedded
multiply-accumulate ASIC cells and 1.2 MB of internal
memory. After iterative optimizations to the critical path,
the clock rate reached its present 4-wide VLIW rate of
167MHz.

Figure 1: VLIW processor architecture with application

specific, combinational hardware functions.

To achieve dramatic performance increases, we observe
that hardware typically executes over 10x faster than
software for the same functionality using the same
fabrication technology. We also observe that computational
portions of a typical processor consume a very small
percentage of the processor area and an even smaller
portion of an FPGA or ASIC. It is not possible to move
entire software applications into hardware but fortunately,
the 90/10 rule states that 90% of a programs execution is
spent in only 10% of its code. Thus, we move the
performance-critical kernels into hardware and execute the
remaining code in software.

Through profiling, the software kernels are identified and
converted into hardware functions. The hardware functions
are strictly combinational logic and do not contain any
internal data storage. Data is stored in the shared register
file or in shared memory, accessible to both the processor
and the hardware functions. The program execution is
controlled by a shared instruction decoder that orders the
execution of both software and hardware.

In software, an if-then-else statement is implemented in no
less than six assembly instructions and stalls the processor
pipeline when branch prediction misses. By converting
forward-branching control flow into hardware functions, we
increase the size of the hardware functions and dramatically
improve performance. Thus, complex decisions execute
using efficient combinational hardware rather than
inefficient software branching. Push-button hardware
synthesis tools produced hardware functions that performed
significantly faster than we estimated.

Two additional benefits of the combinational hardware
functions are cycle compression and power compression.
All software instructions consume one or more cycles.
However, from our experiments, the average computation
requires less than 40% of cycle time when implemented in

hardware. Similarly, the power consu
compared to software for the same ope
concept we call power compression. F
consumption for various arithmetic
designs with simplest hardware units li

Results
All of our Mediabench benchmarks
limited instruction level parallelism
kernel and non-kernel portions of the
“ideal” software speedup was < 2
software kernels into hardware fun
gains that exceed parallelism. Th

targeting our architecture is described in detail in [1], [2].
For the FPGA-based implementation, we used Synplify Pro
synthesis with Quartus II place-and-route software. For
ASIC implementation, we used Design Compiler synthesis
for 160 nm OKI standard cells. Functional simulations were
done in ModelSim and power estimations for the ASIC
implementation were generated from PrimePower.

Table 1 provides a summary of the performance results of a
variety of architectural choices. Hardware functions
provides nearly 10X to over 200X speedups over a single
processor implementation for application speedups ranging
nearly 3X to over 25X [2]. Due to limited ILP, the 4-way
processor provides only nominal speedups ranging from
1.02X to 1.48X. An unlimited-way VLIW is able to achieve
only slight improvements over the 4-way VLIW. However,
when the VLIW processor is combined with hardware
functions, the speedup improves to a range from 4X to over
30X. The energy and power required for a computation
kernel to complete within a hardware function compared to
the VLIW processor is shown in Table 2. Results show a
power improvement ranging from just under 50X to over
400X, with an average improvement of 130X.

Table 2: Performance results

In conclusion, the results of our test show that by moving
software kernels into hardware functions, we gain between
9X and 332X in performance for the kernels and between
4X and 127X in performance for the entire benchmark.
Given standard cell implementation, power reduction from
42X to 418X is achieved with average savings of 133X.

Table 1: Benchmark kernel performance summary
mption of hardware
ration is much less, a
igure 2 shows power
 logic unit (ALU)
sted as Components.

showed significantly
(e.g. < 2) for both

 code [3]. Thus, the
but by moving the

ctions, we achieved
e compilation flow

References
 [1] R. Hoare, A.K. Jones, et al, "Rapid VLIW Processor

Customization for Signal Processing Applications Using
Combinational Hardware Functions," EURASIP Journal on
Applied Signal Processing, 2005, in second review.

[2] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, , and J. Foster,
"An FPGA-based VLIW Processor with Custom Hardware
Execution," in ACM International Symposium on Field-
Programmable Gate Arrays (FPGA), 2005.

[3] D. Kusic, R. Hoare, A. K. Jones, et al, "Extracting Speedup
from C-code with Poor Instruction-level Parallelism," in
Workshop of Massively Parallel Processing (WMPP), 2005.

