

Parallel FFT and Parallel Cyclic Convolution Algorithms with Regular
Structures and no Processor Intercommunication

Marvi Teixeira, Miguel De Jesus, Yamil Rodriguez
Polytechnic University of Puerto Rico, Hato Rey, PR 00919

 mteixeir@caribe.net, eemdejesus@yahoo.com, yrodzii@yahoo.com

Abstract11
We have found parallel algorithmic implementations,
suitable to compute FFTs and one-dimensional Cyclic
Convolutions, which also map well to FPGAs and
multiprocessor computational environments. Certain
algorithms, such as the Agarwal-Cooley cyclic convolution
algorithm transforms the circulant matrix into a block
circulant matrix, where each block is itself circulant and
therefore can be independently processed as a
subconvolution. This method requires that the convolution
length, N, be of the form N=RS, where R and S must be
mutually prime. There are other techniques in which a one-
dimensional convolution can be performed by means of a
multidimensional convolution. The problem is that the
number of points in each dimension has to be doubled by
zero padding. We have found, however, that if the length of
the sequences is composite, N = RS (no need for R and S to
be mutually prime) the circulant matrix can be factored into
a block pseudocirculant matrix. Each block is circulant in
itself and amenable to be independently processed. There is
a preprocessing stage involving decimation by R, and a
final reconstruction stage. Depending on the chosen
implementation strategy no processor intercommunication
is needed. To compute a parallel DFT the Bluestein
Algorithm can be used in order to translate the DFT into a
Cyclic Convolution followed by the use of the proposed
parallel constructs. The current trend toward FPGA and
multiprocessor implementations justifies gaining further
insight into these algorithms and exploring their
implementation in high performance architectures as well
as their application to limited memory processing
environments. The target test-bed architecture is a 64 node,
beowulf PC cluster. The primary software platform will be
pMATLAB developed at MIT. Different FPGA
implementations are also been considered.

Introduction
Several researchers have derived in the past algorithms
suitable to perform fast cyclic convolutions using the same
approach leading to the decimation in time FFT, in
particular decimation by R = 2. We have generalized these
ideas showing that factorizations of the DFT matrix can be
mapped to factorizations of the circulant matrices, which in
turn could lead to fast cyclic convolution algorithms. Such
algorithms can be considered as “duals” of the FFT

1 This work was supported in part by a grant from the Puerto Rico
Industrial Development Company (PRIDCO), Hato Rey, Puerto Rico,
USA.

algorithms originated by the mentioned factorizations of the
DFT matrix, [1], [2]. In particular, decimation (by R) in
time FFTs can be related to a class of cyclic convolution
algorithms by the following factorization of the circulant
matrices [1],

 (1)

where PN,R are stride by R permutations, HN is a circulant
matrix and HP is the resulting block pseudocirculant matrix.
Use of Hp, instead of HN, permits to compute the original
convolution using R2 parallel, subconvolutions. The number
of parallel sections can be further reduced by using
different well known factorizations. For R = 2 we have

(2)

where , and SN/2 is a cyclic shift operator.
A direct implementation uses four (R2) processors or
parallel sections. One possible factorization of the block
pseudocirculant matrix renders three or (R(R-1)+1) parallel
sections.

 (3)

Realization Examples
Case 1: The above factorization is implemented for N = 8.
Since this is a case of N = RM with M=3 and R=2, the flow
graph structure is completely regular. The inner, length-2,
convolutions are implemented via frequency domain. Each
one of the three parallel sections is a length RM-1 sub-
convolution that could be realized using any approach.

 Figure 1: Cyclic Convolution using 3 parallel sections. Note
that the smaller sections have a recurrent structure.

1
,,
−= RNNRNp PHPH

=yPN 2, ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

⎥
⎦

⎤
⎢
⎣

⎡
=

1

0

01

12/0

1

0
X

X

Y

Y

HH
HSH N xPH NP 2,)(=

⎥⎦
⎤

⎢⎣
⎡

=
01

12/0
 HH

HSH N
PH

X[0]
X[1]

X[2]

X[3]

X[4]

X[5]

X[6]
X[7]

Y[0]
Y[1]
Y[2]
Y[3]

Y[4]
Y[5]
Y[6]
Y[7]

S4

S2

S2

S2

1

-1 -1

-1 -1

-1 -1

-1
-1

-1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1
-1

-1
-1

X[n] Y[n]

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡

⎥
⎦

⎤
⎢
⎣

⎡
+

−−
=

1

0

2 0
22

0 2
.

00

00

00

.
2

2
2

0

2

2

1

0

1

10

0

X

X

NI
NINI

NI

H

HH

H

NI
NS

NINI
NI

Y

Y

/

//

/

/

/
//

/

Case 2: Decimation by R=3. In this case the direct
implementation renders R2 = 9 parallel sections.

 (4)

⊕

⊕

⊕

Figure 2: Cyclic Convolution using 9 (processors) parallel
sections. Stages marked with SN/3 are cyclic shifts.

One, out of various, possible factorization reduces the
number of parallel sections to R(R-1)+1 =7. The tradeoff is
an increase in structural complexity.

30

32

3 3 3 3 01

3 3 3 3 3 3 10 1 2

3 3 3 3 3 3 3 3 21

30

32

0 00 0 0 0 0 0
0 00 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 00 0 0 0 0 0
0 00 0 0 0 0 0
0 00 0 0 0 0 0

P

IH
IH

I S S I XH
Y I I S I I I XH H H

I I I I I I I I XH
IH

IH

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢= + + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢− − − − − −⎣ ⎦ ⎣⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎤
⎥
⎥
⎥⎦

⊕

⊕

⊕

⊕

Figure 3: Cyclic Convolution using 7 parallel sections.

Case 3: Decimation by R = 4. In this instance the direct
implementation renders R2 = 16 parallel sections.

 (5)

⊕

⊕

⊕

⊕

Figure 4: Cyclic Convolution using 16 parallel sections.

If the length of each parallel sections is composite then a
parallel construct can be considered in order to realize each
subconvolution. In such case, the complexity of pre and
post processing stages increases.

Computational Complexity
Assuming that each parallel subconvolution is performed
via frequency domain using the FFT, we depict the
multiplicative cost for cc. (see our poster for other options):

Table 1: Parallel Cyclic Convolution Complexity
Method N = 2^M = R·S # of Mults per Method # of Processors # of Mults per Processor

Direct N^2 = 2 (̂2·M) N^2 1 2 (̂2·M)
Direct FFT N = 1·2^M 3/2·N·log2(N) + N 1 2^M·[3/2·M + 4]
Parallelized N = 2·2 (̂M-1) 3 2 (̂M-1)·[3/2·(M-1) + 4]
Parallelized N = 4·2 (̂M-2) [R·(R-1)+1]·[3/2·S·log2(S) + 4·S] 13 2 (̂M-2)·[3/2·(M-2) + 4]
Parallelized N = 8·2 (̂M-3) 57 2 (̂M-3)·[3/2·(M-3) + 4]

of Mults per Processor
Method # of Processors M = 4 M = 8 M = 12 M = 16 M = 20 Processing Time

Direct 1 256 65536 16,777,216 4.30E+09 1.10E+12 ~T 2̂
Direct FFT 1 160 4096 90112 1,835,008 35,651,584 T
Parallelized 3 68 1856 41984 868352 17039360 ~T/2
Parallelized 13 28 832 19456 409600 8126464 ~T/4
Parallelized 57 11 368 8960 192512 3866624 ~T/8

Conclusions
A class of algorithms suitable to map parallel FFTs and
parallel Cyclic Convolutions to FPGAs and multiprocessor
environments has been presented. Different combinations
of parallel sections and decimation rates may yield different
performance rates.

References
 [1] M. Teixeira and D. Rodriguez, “A class of fast cyclic

convolution algorithms based on block pseudocirculants,”
IEEE Signal Processing Letters Vol. 2, No. 5, May 1995.

[2] M. Teixeira and D. Rodriguez, “A novel derivation of the
Agarwal-Cooley fast cyclic convolution algorithm based on
the Good Thomas prime factor algorithm,” Proceedings of
the IEEE 37th Midwest Symposium on Circuits and Systems,
Lafayette, Lousiana, Aug. 1994.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2

1

0

012

23/01

13/23/0

2

1

0

X
X
X

HHH
HSHH
HSHSH

Y
Y
Y

N

NN

== yPYp N 3, xPH NP 3,)(=

0 0 / 4 3 / 4 2 / 4 1 0

1 1 0 / 4 3 / 4 2 1
,4 ,4

2 2 1 0 / 4 3 2

3 3 2 1 0 3

()

N N N

N N
PN n P N

N

y H S H S H S H X
y H H S H S H X

Yp P y Y H P x
y H H H S H X
y H H H H X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

