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Abstract11 
We have found parallel algorithmic implementations, 
suitable to compute FFTs and one-dimensional Cyclic 
Convolutions, which also map well to FPGAs and 
multiprocessor computational environments. Certain 
algorithms, such as the Agarwal-Cooley cyclic convolution 
algorithm transforms the circulant matrix into a block 
circulant matrix, where each block is itself circulant and 
therefore can be independently processed as a 
subconvolution. This method requires that the convolution 
length, N, be of the form N=RS, where R and S must be 
mutually prime. There are other techniques in which a one-
dimensional convolution can be performed by means of a 
multidimensional convolution. The problem is that the 
number of points in each dimension has to be doubled by 
zero padding. We have found, however, that if the length of 
the sequences is composite, N = RS (no need for R and S to 
be mutually prime) the circulant matrix can be factored into 
a block pseudocirculant matrix. Each block is circulant in 
itself and amenable to be independently processed. There is 
a preprocessing stage involving decimation by R, and a 
final reconstruction stage. Depending on the chosen 
implementation strategy no processor intercommunication 
is needed. To compute a parallel DFT the Bluestein 
Algorithm can be used in order to translate the DFT into a 
Cyclic Convolution followed by the use of the proposed 
parallel constructs. The current trend toward FPGA and 
multiprocessor implementations justifies gaining further 
insight into these algorithms and exploring their 
implementation in high performance architectures as well 
as their application to limited memory processing 
environments. The target test-bed architecture is a 64 node, 
beowulf PC cluster. The primary software platform will be 
pMATLAB developed at MIT. Different FPGA 
implementations are also been considered.   

  
Introduction 
Several researchers have derived in the past algorithms 
suitable to perform fast cyclic convolutions using the same 
approach leading to the decimation in time FFT, in 
particular decimation by R = 2.  We have generalized these 
ideas showing that factorizations of the DFT matrix can be 
mapped to factorizations of the circulant matrices, which in 
turn could lead to fast cyclic convolution algorithms. Such 
algorithms can be considered as “duals” of the FFT 
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algorithms originated by the mentioned factorizations of the 
DFT matrix, [1], [2]. In particular, decimation (by R) in 
time FFTs can be related to a class of cyclic convolution 
algorithms by the following factorization of the circulant 
matrices [1], 

           (1) 
 

where PN,R are stride by R permutations, HN is a circulant 
matrix and HP is the resulting block pseudocirculant matrix. 
Use of Hp, instead of HN, permits to compute the original 
convolution using R2 parallel, subconvolutions. The number 
of parallel sections can be further reduced by using 
different well known factorizations. For R = 2 we have 

(2) 

 

where                            , and  SN/2 is a cyclic shift operator. 
A direct implementation uses four (R2) processors or 
parallel sections. One possible factorization of the block 
pseudocirculant matrix renders three or (R(R-1)+1) parallel 
sections. 

    

           (3) 
 

Realization Examples 
Case 1: The above factorization is implemented for N = 8. 
Since this is a case of N = RM with M=3 and R=2, the flow 
graph structure is completely regular. The inner, length-2, 
convolutions are implemented via frequency domain. Each 
one of the three parallel sections is a length RM-1 sub-
convolution that could be realized using any approach.  

 

 

 

 

 

 

 

 

 

 Figure 1: Cyclic Convolution using 3 parallel sections. Note 
that the smaller sections have a recurrent structure. 
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Case 2: Decimation by R=3. In this case the direct 
implementation renders R2 = 9 parallel sections.  
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Figure 2: Cyclic Convolution using 9 (processors) parallel 
sections. Stages marked with SN/3 are cyclic shifts. 

 

One, out of various, possible factorization reduces the 
number of parallel sections to R(R-1)+1 =7. The tradeoff is 
an increase in structural complexity. 
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Figure 3: Cyclic Convolution using 7 parallel sections. 

 

Case 3: Decimation by R = 4. In this instance the direct 
implementation renders R2 = 16 parallel sections. 
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Figure 4: Cyclic Convolution using 16 parallel sections. 
 

If the length of each parallel sections is composite then a 
parallel construct can be considered in order to realize each 
subconvolution. In such case, the complexity of pre and 
post processing stages increases.  
 

Computational Complexity 
Assuming that each parallel subconvolution is performed 
via frequency domain using the FFT, we depict the 
multiplicative cost for cc. (see our poster for other options): 
 

Table 1: Parallel Cyclic Convolution Complexity 
Method N = 2^M = R·S # of Mults per Method # of Processors # of Mults per Processor

Direct N^2 = 2 (̂2·M) N^2 1 2 (̂2·M)
Direct FFT N = 1·2^M 3/2·N·log2(N) + N 1 2^M·[3/2·M + 4]
Parallelized N = 2·2 (̂M-1) 3 2 (̂M-1)·[3/2·(M-1) + 4]
Parallelized N = 4·2 (̂M-2) [R·(R-1)+1]·[3/2·S·log2(S) + 4·S] 13 2 (̂M-2)·[3/2·(M-2) + 4]
Parallelized N = 8·2 (̂M-3) 57 2 (̂M-3)·[3/2·(M-3) + 4]  

# of Mults per Processor
Method # of Processors M = 4 M = 8 M = 12 M = 16 M = 20 Processing Time

Direct 1 256 65536 16,777,216 4.30E+09 1.10E+12 ~T 2̂
Direct FFT 1 160 4096 90112 1,835,008 35,651,584 T
Parallelized 3 68 1856 41984 868352 17039360 ~T/2
Parallelized 13 28 832 19456 409600 8126464 ~T/4
Parallelized 57 11 368 8960 192512 3866624 ~T/8  
 

Conclusions 
A class of algorithms suitable to map parallel FFTs and 
parallel Cyclic Convolutions to FPGAs and multiprocessor 
environments has been presented. Different combinations 
of parallel sections and decimation rates may yield different 
performance rates. 
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