
A Superpipelined CORDIC Unit
Michael Fitzharris1, Jeremy R. Johnson12, Prawat Nagvajara1, Servesh Tiwari2

mrf26@drexel.edu, jjohnson@cs.drexel.edu, prawat@cbis.ece.drexel.edu, st86@drexel.edu
Department of Electrical and Computer Engineering1

Department of Computer Science2

Drexel University
Philadelphia, PA

Introduction
Some applications, such as power system analysis, require
many trigonometric computations. In power system
analysis an iterative solver using Newton-Raphson is
commonly used to solve the load flow equations, which is
an essential and time-consuming computation in many
power system applications. The Jacobian matrix, which is
used each iteration, is constructed using numerous sine and
cosine computations. In such applications, substantial
speedup can be obtained by utilizing specialized hardware
to compute sine and cosine.

The CORDIC method provides an iterative scheme,
consisting of simple addition and binary shift operations, to
compute trigonometric values to any desired precision. The
iterations in the CORDIC method can be pipelined to
devise an efficient hardware unit that is capable of
computing one sine and cosine every clock cycle. The
number of stages in the pipeline depends on the number of
iterations and hence the desired accuracy. This leads to a
very long pipeline, which provides efficient computation
provided there is a stream of sine and cosine computations.
In such cases, an order of magnitude improvement in
performance was obtained using CORDIC unit
implemented in FPGA (field programmable gate array)
compared to a software solution using a Pentium IV
processor.

Load Flow Computation
Load flow computation involves solving a set of nonlinear
equations using Newton-Raphson iteration technique [1].
For each bus i in a power system, the power in that bus is a
function of the voltage magnitude and phase angle of all the
buses in the system and the real and imaginary power is
given by the system of equations

Power flow solution via Newton method involves iterating
the following equation

–J ∆x = f(x),
until f(x) = 0 is satisfied, where the Jacobian, J, is the first
order partial derivative matrix, ∆x is a vector of the change
in the voltage magnitude and phase angle for the current
iteration, and f(x) is a vector representing the real and

imaginary power mismatch. The Jacobian is a large sparse
matrix involving terms with sines and cosines.

The bulk of the time for Newton-Raphson [2] is devoted to
solving for ∆x each iteration. Solving for ∆x is typically
done by factoring, J, a large sparse matrix, into lower and
upper triangular factors and performing forward and
backward substitution. In previous work we have shown
how to reduce the time for the LU factorization using
special-purpose hardware implemented with FPGA [3,4].
However, this solution requires the update to the Jacobian
to be performed in software and communication to/from the
FPGA can be a bottleneck. Constructing the Jacobian on
the FPGA eliminates this bottleneck, but requires the
hardware to support trigonometric computations.

The CORDIC Algorithm
CORDIC [5], “COordinate Rotation DIgital Computer,”
provides an iterative scheme for computing trigonometric
functions, which obtains one bit of accuracy per iteration.
The CORDIC algorithm works by successively rotating a
two-dimensional vector through smaller and smaller angles
(micro-rotations) that converge on the desired angle. The
vector is initialized so that the final coordinates contain the
sine and cosine of the specified angle. Moreover, the
micro-rotations are chosen so that the computation involves
only shifts and adds. At the ith iteration, the coordinates
(x,y) of the vector are updated using the equations

x = x ± 2i y

y = y ± 2i x,

where the signs are chosen depending on whether the
micro-rotation needs to be performed clockwise or counter-
clockwise.

Because CORDIC can be performed using shifts and adds it
has traditionally been used when a hardware multiplier is
unavailable or when hardware resources are at a premium,
and has been widely used on FPGAs [6]. When multipliers
are available CORDIC is not generally considered the most
efficient approach for trigonometric computation.
However, when the stages in the CORDIC algorithm are
unrolled and pipelined, CORDIC can provide a high-
performance method for trigonometric calculation.

CORDIC Unit
The CORDIC algorithm is typically implemented as an
iterative process, where the time taken is proportional to the
number of iterations, which is proportional to the desired

accuracy. To produce a precision of approximately four
decimal places for sine and cosine calculations, the
CORDIC unit requires 22 stages. If there are many sine
and cosine computations to perform, then the stages in the
CORDIC algorithm can be unrolled, and this leads to a
speed versus area tradeoff in a hardware implementation
[7]. In our implementation, the algorithm was completely
unrolled, leading to a 22-stage pipeline. Three additional
stages were used to convert from floating-point to fixed-
point. Floating-point computation was required to interface
with the rest of the load flow computation.

The 25-stage pipeline was synthesized on a Statix FPGA
(EP1S25) [8] at a maximum frequency of 122 MHz. Each
stage can be further divided to separate the most extensive
logic and provide for even more parallelism. This method is
considered a Super-Pipelined CORDIC unit and forces the
entire pipeline to double in length. The benefit of the super-
pipelined architecture is realized by synthesis results which
record a maximum frequency of approximately 166 MHz; a
36% increase in frequency over the previous architecture.

Performance
The Super-Pipelined CORDIC unit was used in the
construction of the Jacobian matrices arising in load flow
computation. Performance data was obtained for industry
standard benchmarks in Table 1 [9]. The construction of
the Jacobian for 1648 and 7917 bus systems required 6852
and 33,945 trigonometric computations.

Table 1: System Data

Name Source PV Buses PQ Buses Y-bus
Non Zeros

Jacobian
Non Zeros

1648 Bus PSS/E 312 1335 6852 22232
7917 Bus PSS/E 1324 6592 33945 113316

Table 2 shows the timing data comparing sine and cosine
computations using the FPGA CORDIC unit compared to
software computation on a 2.8 GHz Pentium IV processor.
The CORDIC unit obtained a 20x speedup for the
trigonometric computations; however, when the time for
DMA transfer between the FPGA (Tsunami board) and host
PC using a 66 MHz PCI bus is included, the speedup gain
was only a factor of two. Note that the PCI bus
performance was significantly degraded due the use of the
Avalon bus, which is only 32 bits wide. This two-fold
reduction in the time for trigonometric computation only
led to a 10% reduction in the time to compute the Jacobian.

Table 2: Timing Analysis
Time (msec) SW Time (msec) HW Speedup (SW/HW)

Trig. VS. Trig.
1648 Bus 2.1212 0.1042 20.3570
7917 Bus 10.197 0.5147 19.8115

Trig. VS. Trig. + DMA
1648 Bus 2.1212 1.0758 1.9717
7917 Bus 10.197 5.2727 1.9339

Jac. VS Jac.
1648 Bus 12.8788 11.8182 1.0897
7917 Bus 67.4242 62.0076 1.0874

The timing data in Table 2 shows that an FPGA CORDIC
approach to trigonometric computation can lead to a
significant improvement over computation on a Pentium;
however, the combined software/hardware architecture does
not lead to a significant reduction in the time to construct

the Jacobian matrices in our load flow application. This is
primarily due to the communication overhead and the
limitations of the PCI interface that was used. For the
performance gain provided by CORDIC to be fully
exploited, an architecture must be designed which allows
for the necessary data to reside local to the hardware unit or
to be accessible at much faster communication speeds. Two
possible approaches are being investigated. The first uses
embedded processors enhanced with the CORDIC unit and
additional floating-point processors and the second uses a
complete hardware solution to Jacobian construction.

References
 [1] A. R. Bergen, V. Vittal, Power Systems Analysis, 2nd Edition,

Prentice Hall, 2000.

[2] Feng Tu and A. J. Flueck, “A Message-Passing Distributed
Memory Parallel Powerflow Algorithm,” Power Engineering
Society Winter Meeting, 2002. IEEE, Volume 1 (2002), pp.
211 – 216.

[3] J. Johnson, P. Vachranukunkiet, S. Tiwari, P. Nagvajara, C.
Nwankpa, “Performance Analysis of Load Flow
Computation Using FPGA,” In Proceedings of the 15th Power
Systems Computation Conference, 2005.

[4] J. Johnson, P. Nagvajara, C. Nwankpa, “Sparse Linear Solver
for Power System Analysis using FPGA”, In Proceedings of
the Eighth Annual Workshop on High Performance
Embedded Computing (HPEC 2004), 2004.

[5] J. E. Volder, “The CORDIC Trigonometric Computing
Technique”, IRE Transactions on Electronic Computers, V.
EC-8, No. 3, pp. 330-334, 1959.

[6] Ray Andraka, “A Survey of CORDIC Algorithms for FPGA
Based Computers,” in Proceedings of the 1998 ACM/SIGDA
sixth international symposium on Field programmable gate
arrays (FPGA '98), Feb. 22-24, 1998, Monterey, CA. pp. 191-
200.

[7] S. Wang and V. Piuri, “A Unified View of CORDIC Processor
Design,” Application Specific Processors, Edited by Earl E.
Swartzlander, Jr., Ch. 5, pp. 121-160, Kluwer Academic
Press, November 1996.

[8] http://www.altera.com.

[9] PSS/E. The Shaw Power Group Inc 2005.
http://www.shawgrp.com

