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Introduction 
Some applications, such as power system analysis, require 
many trigonometric computations.  In power system 
analysis an iterative solver using Newton-Raphson is 
commonly used to solve the load flow equations, which is 
an essential and time-consuming computation in many 
power system applications.  The Jacobian matrix, which is 
used each iteration, is constructed using numerous sine and 
cosine computations.  In such applications, substantial 
speedup can be obtained by utilizing specialized hardware 
to compute sine and cosine.   

The CORDIC method provides an iterative scheme, 
consisting of simple addition and binary shift operations, to 
compute trigonometric values to any desired precision. The 
iterations in the CORDIC method can be pipelined to 
devise an efficient hardware unit that is capable of 
computing one sine and cosine every clock cycle.  The 
number of stages in the pipeline depends on the number of 
iterations and hence the desired accuracy.  This leads to a 
very long pipeline, which provides efficient computation 
provided there is a stream of sine and cosine computations.  
In such cases, an order of magnitude improvement in 
performance was obtained using CORDIC unit 
implemented in FPGA (field programmable gate array) 
compared to a software solution using a Pentium IV 
processor. 

 
Load Flow Computation 
Load flow computation involves solving a set of nonlinear 
equations using Newton-Raphson iteration technique [1]. 
For each bus i in a power system, the power in that bus is a 
function of the voltage magnitude and phase angle of all the 
buses in the system and the real and imaginary power is 
given by the system of equations 

        

 

Power flow solution via Newton method involves iterating 
the following equation  

–J ∆x = f(x), 
until f(x) = 0 is satisfied, where the Jacobian, J, is the first 
order partial derivative matrix, ∆x is a vector of the change 
in the voltage magnitude and phase angle for the current 
iteration, and f(x) is a vector representing the real and 

imaginary power mismatch.  The Jacobian is a large sparse 
matrix involving terms with sines and cosines. 

The bulk of the time for Newton-Raphson [2] is devoted to 
solving for ∆x each iteration.  Solving for ∆x is typically 
done by factoring, J, a large sparse matrix, into lower and 
upper triangular factors and performing forward and 
backward substitution.  In previous work we have shown 
how to reduce the time for the LU factorization using 
special-purpose hardware implemented with FPGA [3,4].  
However, this solution requires the update to the Jacobian 
to be performed in software and communication to/from the 
FPGA can be a bottleneck.  Constructing the Jacobian on 
the FPGA eliminates this bottleneck, but requires the 
hardware to support trigonometric computations. 

The CORDIC Algorithm 
CORDIC [5], “COordinate Rotation DIgital Computer,” 
provides an iterative scheme for computing trigonometric 
functions, which obtains one bit of accuracy per iteration.  
The CORDIC algorithm works by successively rotating a 
two-dimensional vector through smaller and smaller angles  
(micro-rotations) that converge on the desired angle.  The 
vector is initialized so that the final coordinates contain the 
sine and cosine of the specified angle.  Moreover, the 
micro-rotations are chosen so that the computation involves 
only shifts and adds.  At the ith iteration, the coordinates 
(x,y) of the vector are updated using the equations 

x = x ± 2i y 

y = y ± 2i x, 

where the signs are chosen depending on whether the 
micro-rotation needs to be performed clockwise or counter-
clockwise. 

Because CORDIC can be performed using shifts and adds it 
has traditionally been used when a hardware multiplier is 
unavailable or when hardware resources are at a premium, 
and has been widely used on FPGAs [6].  When multipliers 
are available CORDIC is not generally considered the most 
efficient approach for trigonometric computation.  
However, when the stages in the CORDIC algorithm are 
unrolled and pipelined, CORDIC can provide a high-
performance method for trigonometric calculation. 

 

CORDIC Unit 
The CORDIC algorithm is typically implemented as an 
iterative process, where the time taken is proportional to the 
number of iterations, which is proportional to the desired 



accuracy.  To produce a precision of approximately four 
decimal places for sine and cosine calculations, the 
CORDIC unit requires 22 stages.  If there are many sine 
and cosine computations to perform, then the stages in the 
CORDIC algorithm can be unrolled, and this leads to a 
speed versus area tradeoff in a hardware implementation 
[7].  In our implementation, the algorithm was completely 
unrolled, leading to a 22-stage pipeline.  Three additional 
stages were used to convert from floating-point to fixed-
point.  Floating-point computation was required to interface 
with the rest of the load flow computation. 

The 25-stage pipeline was synthesized on a Statix FPGA 
(EP1S25) [8] at a maximum frequency of 122 MHz. Each 
stage can be further divided to separate the most extensive 
logic and provide for even more parallelism. This method is 
considered a Super-Pipelined CORDIC unit and forces the 
entire pipeline to double in length. The benefit of the super-
pipelined architecture is realized by synthesis results which 
record a maximum frequency of approximately 166 MHz; a 
36% increase in frequency over the previous architecture.    

Performance 
The Super-Pipelined CORDIC unit was used in the 
construction of the Jacobian matrices arising in load flow 
computation.  Performance data was obtained for industry 
standard benchmarks in Table 1 [9].  The construction of 
the Jacobian for 1648 and 7917 bus systems required 6852 
and 33,945 trigonometric computations. 

Table 1: System Data 

Name Source PV Buses PQ Buses Y-bus 
Non Zeros

Jacobian
Non Zeros

1648 Bus PSS/E 312 1335 6852 22232
7917 Bus PSS/E 1324 6592 33945 113316  

Table 2 shows the timing data comparing sine and cosine 
computations using the FPGA CORDIC unit compared to 
software computation on a 2.8 GHz Pentium IV processor. 
The CORDIC unit obtained a 20x speedup for the 
trigonometric computations; however, when the time for 
DMA transfer between the FPGA (Tsunami board) and host 
PC using a 66 MHz PCI bus is included, the speedup gain 
was only a factor of two.  Note that the PCI bus 
performance was significantly degraded due the use of the 
Avalon bus, which is only 32 bits wide.  This two-fold 
reduction in the time for trigonometric computation only 
led to a 10% reduction in the time to compute the Jacobian. 

Table 2: Timing Analysis 
Time (msec) SW Time (msec) HW Speedup (SW/HW)

Trig. VS. Trig.
1648 Bus 2.1212 0.1042 20.3570
7917 Bus 10.197 0.5147 19.8115

Trig. VS. Trig. + DMA
1648 Bus 2.1212 1.0758 1.9717
7917 Bus 10.197 5.2727 1.9339

Jac. VS Jac.
1648 Bus 12.8788 11.8182 1.0897
7917 Bus 67.4242 62.0076 1.0874  

The timing data in Table 2 shows that an FPGA CORDIC 
approach to trigonometric computation can lead to a 
significant improvement over computation on a Pentium; 
however, the combined software/hardware architecture does 
not lead to a significant reduction in the time to construct 

the Jacobian matrices in our load flow application.  This is 
primarily due to the communication overhead and the 
limitations of the PCI interface that was used. For the 
performance gain provided by CORDIC to be fully 
exploited, an architecture must be designed which allows 
for the necessary data to reside local to the hardware unit or 
to be accessible at much faster communication speeds. Two 
possible approaches are being investigated.  The first uses 
embedded processors enhanced with the CORDIC unit and 
additional floating-point processors and the second uses a 
complete hardware solution to Jacobian construction. 
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