
A Data-Driven SoC System for Embedded Continuous Speech
Recognition

Raymond Hoare, Kshitij Gupta, Jeffrey Schuster
University of Pittsburgh, Pittsburgh, PA, 15233

Phone: 412-624-4706
 Email Addresses: {hoare, jws52, ksg3}@pitt.edu

Abstract
In this paper we present a SoC system able to perform
Small-Vocabulary Automatic Speech Recognition
(SVASR) based on Hidden-Markov Model (HMM)
recognition techniques. Through in-depth analysis of the
data-flow within the SPHINX 3 software [1], we create an
efficient single-chip architecture tailored to the specific
computational needs of a the system. By creating a token-
passing scheme to control the work-load within the system
the on-chip resources as well as the complexity of the
global control required can be minimized, while the
bandwidth usage can be maximized, creating a stream-lined
FPGA architecture able to evaluate small vocabularies in
real time.
Introduction
Many of today’s state-of-the-art ASR systems rely on the
use of HMM evaluation to calculate the probabilities
associated with a set of phonetic units, based on inputs
supplied from Gaussian probability evaluations [2]. These
systems are able to achieve accuracy rates upwards of 95%
on a dictionaries greater than 1,000 words, however, this
accuracy comes at the expense of needing to evaluate of
hundreds of thousands of Gaussian probabilities resulting in
execution times up to 10x real-time [3]. The
computationally intensive nature of this problem as well as
the large amount of memory bandwidth required both make
the use of embedded systems very difficult.

These types of systems can be broken down into four major
components: the Feature Extractor (FE), the Acoustic
Modeler (AM), the Phoneme Evaluator (PE), and the Word
Modeler (WM), each presenting its own unique problems.
FE involves decomposing the incoming speech in to its
frequency content via either the Fast Fourier Transform of
the Discrete Cosine Transform. These operations can be
performed on most currently available DSP devices and
will therefore not be considered within the scope of this
research. The AM is the front-end of the recognition
system, responsible for evaluating the inputs received from
the DSP unit, generally Cepstral coefficients and their
derivatives, with respect to a database of known Gaussian
probabilities and producing a normalized set of scores for
the individual sub-phonetic units, senones, represented in
the database. The PE associates groups of senones into to
HMMs representing the phonetic units allowable in the
systems dictionary. The WM uses a tree-based structure to
string phonemes together into words based on the
sequences defined in the system dictionary.

The architecture presented in this paper utilizes shared
memories between the stages to create three different task-
specific blocks connected in a cascade fashion to achieve
the highest amount of performance possible within each
stage. Further, by implementing a token-passing scheme,
similar to[4], between the PE and WM blocks, an
architecture was created in which the active data in the
system determines the scheduling of the systems work-load.
Figure 1 shows the basic data-flow through the system with
shared RAM blocks between each phase and FIFOs
between the 2nd and 3rd stages to implement the token
passing scheme.

Figure 1: Block Diagram of Single-Chip ASR Architecture

Acoustic Modeler
AM is responsible for relating the data received from the
feature extractor to the data found in the systems dictionary
and can account for over 70% to 95% [5] of the
computational effort in modern HMM-based ASR systems.
Every senone, in the database is made-up of 8 components,
each one representing a 39 dimensional multi-variant
Gaussian probability distribution. The components of a
senone are log-added [6] to one another to obtain the
probability of having observed the given senone. Based on
the 1000-word RM1 dictionary [7], our system utilizes
1935 senones, requiring over 2.5 Million Floating-Point
operations to calculate scores for every senone. For any
practical system, running at real-time, these calculations
become the critical path and need to be done as efficiently
as possible.

During analysis of the SPHINX 3 system it was observed
that not all of the senones in the database actually needs to
be evaluated all the time. Further, on average 2 of the 8
components of a given senone contribute well over 80% of
the senone score, leading to the ability to save 75% of the
computations per senone with negligible reduction in
accuracy. To obtain this reduced set of components a
SubVector-Quantization, algorithm was implemented with
an FMAX of 177MHz post place-and-route.

By performing an in-depth analysis of the calculations
being performed it was also found that the computationally
intensive floating-point Gaussian probability calculations
found in the SPHINX 3 system could be replaced with
fixed-point calculations while only introducing errors on
the order of 10-4. The ability to use fixed instead of floats,
allowed for the design of a 22 stage fully pipelined acoustic
modeler running at over 250MHz post place-and-route on a
Vertix-4 SX35-10.

When the entire AM was synthesized it utilized only 8% of
the available DSP blocks, 15% of the CLB slices, and 27%
of the available block RAMs, with a post place-and-route
speed of 125MHz.
Phoneme Evaluator
The core of the PE consists of a HMM evaluation based on
a basic 3-state Bakis topology. By pipe-lining the
necessary calculations along with the RAM reads / writes a
simple 10-stage pipe can be derived using only
combinational logic to perform the necessary mathematics
that synthesizes at 200MHz on a Virtex-4 chip, pre-place-
and-route.

PE is also responsible for pruning the active data in the
system based on a relative-beam pruning methodology.
The output scores for each HMM are compared to the
beams and the active token is routed to its appropriate
FIFO, either Dead or Valid, for processing by the Word
Modeler. The pruning process only adds 4 additional stages
to the pipe-line and the entire Phoneme Calculator was
synthesized at 124MHz on the Virtex-4 and consumed only
8% of the CLB Slices and 9.4% of the Block RAMs.
Word Modeler
In modern ASR, WM uses tree-based searching techniques
to seek out the most likely strings of phonemes, and
subsequently words, observed over time. To maintain
similarity to the SPHINX 3 software, this search was
implemented using a flat-lexical tree search algorithm.
Traversing this tree can be thought of as the evaluation of a
link-list of link-lists, where each node in the tree defines the
beginning of a link-list, and the number of possible
branches from that node to its adjacent nodes defines the
number of elements in the list. Since the phonetic structure
of the words is known well in advance all of this
information can be placed into ROMs before run-time,
allowing the majority of the WM operations to be simple
ROM reads, wherein the data read from one ROM becomes
the address into the next.

While the WM is responsible for both cleaning up the data
pruned out by the phoneme modeler, and processing the
data that remains active, the dead token clean-up simply
pulls a token from the Dead FIFO and overwrites the RAM
contents found at the address specified by that token and
therefore has an FMAX equal to that of the target technology.
The valid evaluation stage is significantly more complex
and requires routines to evaluate the link-lists as well as

determine the validity of the output of a given tree in the
lexicon. Despite its added complexity, the valid evaluation
block consumes less than 1% of the resources on a Virtex-4
with a pre-place-and-route FMAX of 216MHz.
Conclusions
This research has proven the ability to implement HMM-
based ASR on embedded systems for use in real-time
speech recognition and transcription tasks. Through
implementation of a token passing scheme the amount of
work done during recognition is minimized resulting in the
consumption of fewer resources, ideal for small-scale
embedded systems.

Our final system performed recognition on a 17 word
dictionary utilizing 451 nodes split between five different
trees, and achieved a post-place-and-route speed of
112MHz on the Vertix-4. The system only consumed 24%
of the slices available on the chip, but due to its heavy
memory requirements, consumed 61% of the available
Block RAMs. Table 1 summarizes the specifications for
each of the stages of the design.

Table 1: Summary of Synthesis Results for Vertix-4 SX35-10
 FMAX

(MHz)
CLB Slices

(%)
Block RAMs

(%)
AM 125 15 27
PE 124 8 10

WM 216 1 0
System 112 25 61

References
[1] P. Placeway, et al, “The 1996 HUB-4 Sphinx-3 System”, Proc.

DARPA Speech Recognition Workshop, Feb. 1997.
[2] K.K. Agaram, S.W. Keckler, D. Burger, “Characterizing the

SPHINX Speech Recognition System”, University of
Texas at Austin, Department of Computer Sciences,
Technical Report TR2001-18, January 2001.

[3] M. Ravishankar, et al, “The 1999 CMU 10X Real Time
Broadcast News Transcription System”, Proc. DARPA
Workshop on Automatic Transcription of Broadcast
News, Washington DC, May 2000

[4] S.J. Young, et al. “Token Passing: a Simple Conceptual
Model for Connected Speech Recognition Systems”,
Cambridge University Engineering Department. July
1989.

[5] J. Nouza, “Feature Selection Methods for Hidden Markov
Model-Based Speech Recognition,” Proc. International.
Conference on Pattern Recognition, 1996, vol. 2, pp.
186.190.

[6] X. Li & J. Blimes, “Feature Pruning in Likelihood Evaluation
of HMM-Based Speech Recognition”, Unversity of
Washington, 2003.

[7] Linguistic Data Consortium. University of Pennsylvania. 27
Oct. 2004 <www.ldc.upenn.edu>

