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Abstract  
In this paper we present a SoC system able to perform 
Small-Vocabulary Automatic Speech Recognition 
(SVASR) based on Hidden-Markov Model (HMM) 
recognition techniques.  Through in-depth analysis of the 
data-flow within the SPHINX 3 software [1], we create an 
efficient single-chip architecture tailored to the specific 
computational needs of a the system.  By creating a token-
passing scheme to control the work-load within the system 
the on-chip resources as well as the complexity of the 
global control required can be minimized, while the 
bandwidth usage can be maximized, creating a stream-lined 
FPGA architecture able to evaluate small vocabularies in 
real time. 
Introduction  
Many of today’s state-of-the-art ASR systems rely on the 
use of HMM evaluation to calculate the probabilities 
associated with a set of phonetic units, based on inputs 
supplied from Gaussian probability evaluations [2].  These 
systems are able to achieve accuracy rates upwards of 95% 
on a dictionaries greater than 1,000 words, however,  this  
accuracy comes at the expense of needing to evaluate of 
hundreds of thousands of Gaussian probabilities resulting in 
execution times up to 10x real-time [3].  The 
computationally intensive nature of this problem as well as 
the large amount of memory bandwidth required both make 
the use of embedded systems very difficult.   
 
These types of systems can be broken down into four major 
components: the Feature Extractor (FE), the Acoustic 
Modeler (AM), the Phoneme Evaluator (PE), and the Word 
Modeler (WM), each presenting its own unique problems.  
FE involves decomposing the incoming speech in to its 
frequency content via either the Fast Fourier Transform of 
the Discrete Cosine Transform.  These operations can be 
performed on most currently available DSP devices and 
will therefore not be considered within the scope of this 
research. The AM is the front-end of the recognition 
system, responsible for evaluating the inputs received from 
the DSP unit, generally Cepstral coefficients and their 
derivatives, with respect to a database of known Gaussian 
probabilities and producing a normalized set of scores for 
the individual sub-phonetic units, senones, represented in 
the database.  The PE associates groups of senones into to 
HMMs representing the phonetic units allowable in the 
systems dictionary.  The WM uses a tree-based structure to 
string phonemes together into words based on the 
sequences defined in the system dictionary.   

 
The architecture presented in this paper utilizes shared 
memories between the stages to create three different task-
specific blocks connected in a cascade fashion to achieve 
the highest amount of performance possible within each 
stage.  Further, by implementing a token-passing scheme, 
similar to[4], between the PE and WM blocks, an 
architecture was created in which the active data in the 
system determines the scheduling of the systems work-load. 
Figure 1 shows the basic data-flow through the system with 
shared RAM blocks between each phase and FIFOs 
between the 2nd and 3rd stages to implement the token 
passing scheme. 

 
Figure 1: Block Diagram of Single-Chip ASR Architecture  

 
Acoustic Modeler 
AM is responsible for relating the data received from the 
feature extractor to the data found in the systems dictionary 
and can account for over 70% to 95% [5] of the 
computational effort in modern HMM-based ASR systems.  
Every senone, in the database is made-up of 8 components, 
each one representing a 39 dimensional multi-variant 
Gaussian probability distribution. The components of a 
senone are log-added [6] to one another to obtain the 
probability of having observed the given senone. Based on 
the 1000-word RM1 dictionary [7], our system utilizes 
1935 senones, requiring over 2.5 Million Floating-Point 
operations to calculate scores for every senone. For any 
practical system, running at real-time, these calculations 
become the critical path and need to be done as efficiently 
as possible.  
 
During analysis of the SPHINX 3 system it was observed 
that not all of the senones in the database actually needs to 
be evaluated all the time.  Further, on average 2 of the 8 
components of a given senone contribute well over 80% of 
the senone score, leading to the ability to save 75% of the 
computations per senone with negligible reduction in 
accuracy.  To obtain this reduced set of components a 
SubVector-Quantization, algorithm was implemented with 
an FMAX of 177MHz post place-and-route.   

 



 

 
By performing an in-depth analysis of the calculations 
being performed it was also found that the computationally 
intensive floating-point Gaussian probability calculations 
found in the SPHINX 3 system could be replaced with 
fixed-point calculations while only introducing errors on 
the order of 10-4.  The ability to use fixed instead of floats, 
allowed for the design of a 22 stage fully pipelined acoustic 
modeler running at over 250MHz post place-and-route on a 
Vertix-4 SX35-10.  
 
When the entire AM was synthesized it utilized only 8% of 
the available DSP blocks, 15% of the CLB slices, and 27% 
of the available block RAMs, with a post place-and-route 
speed of 125MHz. 
Phoneme Evaluator 
The core of the PE consists of a HMM evaluation based on 
a basic 3-state Bakis topology.  By pipe-lining the 
necessary calculations along with the RAM reads / writes a 
simple 10-stage pipe can be derived using only 
combinational logic to perform the necessary mathematics 
that synthesizes at 200MHz on a Virtex-4 chip, pre-place-
and-route.  
 
PE is also responsible for pruning the active data in the 
system based on a relative-beam pruning methodology.  
The output scores for each HMM are compared to the 
beams and the active token is routed to its appropriate 
FIFO, either Dead or Valid, for processing by the Word 
Modeler.  The pruning process only adds 4 additional stages 
to the pipe-line and the entire Phoneme Calculator was 
synthesized at 124MHz on the Virtex-4 and consumed only 
8% of the CLB Slices and 9.4% of the Block RAMs.  
Word Modeler 
In modern ASR, WM uses tree-based searching techniques 
to seek out the most likely strings of phonemes, and 
subsequently words, observed over time.  To maintain 
similarity to the SPHINX 3 software, this search was 
implemented using a flat-lexical tree search algorithm. 
Traversing this tree can be thought of as the evaluation of a 
link-list of link-lists, where each node in the tree defines the 
beginning of a link-list, and the number of possible 
branches from that node to its adjacent nodes defines the 
number of elements in the list.  Since the phonetic structure 
of the words is known well in advance all of this 
information can be placed into ROMs before run-time, 
allowing the majority of the WM operations to be simple 
ROM reads, wherein the data read from one ROM becomes 
the address into the next.   
 
While the WM is responsible for both cleaning up the data 
pruned out by the phoneme modeler, and processing the 
data that remains active, the dead token clean-up simply 
pulls a token from the Dead FIFO and overwrites the RAM 
contents found at the address specified by that token and 
therefore has an FMAX equal to that of the target technology. 
The valid evaluation stage is significantly more complex 
and requires routines to evaluate the link-lists as well as 

determine the validity of the output of a given tree in the 
lexicon.  Despite its added complexity, the valid evaluation 
block consumes less than 1% of the resources on a Virtex-4 
with a pre-place-and-route FMAX of 216MHz.               
Conclusions  
This research has proven the ability to implement HMM-
based ASR on embedded systems for use in real-time 
speech recognition and transcription tasks.  Through 
implementation of a token passing scheme the amount of 
work done during recognition is minimized resulting in the 
consumption of fewer resources, ideal for small-scale 
embedded systems.   
 
Our final system performed recognition on a 17 word 
dictionary utilizing 451 nodes split between five different 
trees, and achieved a post-place-and-route speed of 
112MHz on the Vertix-4.  The system only consumed 24% 
of the slices available on the chip, but due to its heavy 
memory requirements, consumed 61% of the available 
Block RAMs. Table 1 summarizes the specifications for 
each of the stages of the design. 
 

Table 1: Summary of Synthesis Results for Vertix-4 SX35-10 
 FMAX 

(MHz) 
CLB Slices 

(%) 
Block RAMs 

(%) 
AM 125  15 27 
PE 124 8 10 

WM 216 1 0 
System 112 25 61 
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