
A Methodology for Exploring Finite-Precision Effects when Solving Linear
Systems of Equations with Least-Squares Techniques in Fixed-Point

Hardware
Ramon Uribe and Thomas Cesear

AccelChip Inc., ramon.uribe@accelchip.com and tom.cesear@accelchip.com

Abstract
The optimum least-squares solution of linear systems of
equations is a fundamental operation in many state-of-the-
art communications systems. These include radar, sonar,
beamforming, space-time adaptive processing (STAP),
Global Position System (GPS) navigation, and multiple-
input, multiple-output (MIMO) algorithms where the least-
squares optimality criterion is applied. These applications
typically require very large amounts of processing which
makes implementations in cost-effective, fixed-point
hardware – in Field Programmable Gate Arrays (FPGAs) or
Application-Specific Integrated Circuits (ASICs) - the
preferred choice. However, the implementation of the
least-squares problem in these fabrics has the inherent
challenge of sensitivity to finite-precision effects (aka
round-off errors) as incurred with fixed-point arithmetic.
This paper presents an effective methodology for the
exploration of implementation alternatives of least-squares
solution of linear systems of equations in fixed-point
hardware.

Introduction
An efficient implementation of a least-squares solution
depends on essential characteristics of the vectors and
matrices that represent the system of equations when cast in
a linear algebra context. These characteristics include the
size, symmetry or any other structural characteristic of
vectors and matrices. These characteristics, along with
system requirements for a real-time application drive the
selection of a suitable algorithm for implementation.

Traditionally, the implementation of the least-squares
problem has been done with general-purpose DSP
processors (DSPs) using floating-point arithmetic.
Floating-point arithmetic minimizes round-off error making
the implementation of a least-squares solution less sensitive
to this type of errors. On the other hand, these
implementations tend to be limited in processing speed due
to the use of a single floating-point processing unit as
illustrated in Figure 1 below.

Figure 1: Handset performance requirements vs. DSP

processor capability.

The continued success of FPGAs and variations of ASICs
in the deployment of high performance DSP algorithms
makes them a very appealing implementation fabric. These
silicon fabrics, however, are typically tailored for
implementations with fixed-point arithmetic.
Consequently, the implementation of the least-squares
problem in these fabrics has the inherent challenge of
sensitivity to round-off errors as incurred with fixed-point
arithmetic.

Least-Squares Solution to Linear System of
Equations
A linear system of equations can be cast in linear algebra
terms as follows:

yx =A
where

1) A is an mxn matrix containing the coefficients of the
variables involved in the set of equations,

2) x is an nx1 vector with n variables involved in the set
of equations,

3) y is an mx1 vector with the equations right hand side
values.

Depending on the dimensions of the system, and the rank of
the coefficient matrix A, the system can have different
types of solution (or no solution at all). The specific type of
system of equations we will focus on in this paper is the
over-determined system of equations. This is the case
where the number of equations is larger than the number of
unknowns (m>n), resulting in a rectangular matrix A. This
type of system of equations arises in a number of important
areas such as radar, sonar, and other sensor array processing
applications in general. In these applications, snapshots of
sensor data form the rows of the matrix and the number of

columns is determined by the number of sensors in the
array.

An over-determined system of equations does not have, in
general, an exact solution. The solution to this type of
system requires, instead, a solution in the least-squares
sense. The following sub-sections outline the use of
different matrix factorization techniques to efficiently arrive
at the least-squares solution.

QR Factorization
The coefficient matrix A can be factor as the product of two
matrices

A = QR,

where Q is an mxm orthogonal (unitary in complex case)
matrix; QQ-T = I, and R is an mxn upper-triangular matrix.

This factorization enables solution by back-substitution of
the modified system

Rx = z,

where z = QTb, x can then be computed by back-
substitution.

Cholesky Factorization
The Cholesky factorization of a symmetric, positive matrix
is given by

C = RRT,

where R is an nxn upper-triangular matrix called the
Cholesky factor of C.

To solve the original system of equations Ax = y, the
covariance matrix of the data in A is constructed prior to
the solution of the system of equations. In principle, the
covariance matrix is defined as

C = AAT.

In addition, a cross-correlation is computed to define the
new right-hand-side of the system of equations. The system
of equations can then be solved by finding a solution to the
modified system

Rx = z,

where z = RTp, and p is the cross-correlation vector. We
can then compute x via back-substitution.

SVD
The SVD of an mxn matrix X is defined as the factorization

TUSVX = ,

where

1) is an orthogonal (unitary in the complex
case) matrix. The columns of U are the left singular
vectors of X.

mxmR∈U

2) is an orthogonal (unitary in the complex
case) matrix. The columns of V are the right singular
vectors of X.

nxnR∈V

3)
),...,(1 pdiag σσ=S

 is an mxn diagonal matrix

with p = min(m, n) and pσσσ ,..,, 21 are the
singular values of X.

To compute a least-squares solution of the system of
equations involves creating the Moore-Penrose pseudo

inverse of X given by , with S
TUVSX ++ = + being

diagonal formed with the multiplicative inverses of the non-
zero singular values of X placed on the diagonal.

Overview of the Methodology
Exploring alternatives early in the design process, while its
representation is still at a high level of abstraction, affords
the most leverage in terms of impact on the final
implementation speed and area cost. Algorithmic and
architectural optimization can frequently yield multiple
orders-of-magnitude impact on the speed-area solution
space of an algorithm. Algorithmic synthesis tools that use
a true top-down DSP design methodology enable a
collaborative design effort between algorithm developers,
system engineers and hardware designers by automating
key process steps at different levels of abstraction for an
direct implementation in fixed-point arithmetic hardware.

This paper presents an effective methodology for the
exploration of implementation alternatives of least-squares
solution of linear systems of equations in fixed-point
hardware. With the many available choices of algorithms,
and the issues related to finite-precision effects in fixed-
point arithmetic, the amount of effort required from a
design team to arrive at an effective implementation can be
formidable. We will describe a fine-grained parameterized
model-based library and algorithm synthesis tool that can
be used to automate the architecture tradeoff analysis and
finite-precision effects allowing the design team to evaluate
potential implementation options early and often in the
design process. The goal of this methodology is to enable
achieving an optimum implementation for a particular
application. More specifically, this paper will explore
different alternatives for a least-squares solution
implementation based on matrix factorization methods.
These include triangular-orthogonal (QR) factorization,
Cholesky factorization, and singular value decomposition
(SVD) techniques. We will demonstrate how this
methodology can be effectively used for state-of-the-art
communications systems, and we will discuss in detail the
architecture, micro-architecture, and finite-precision
tradeoff analysis of each of these alternatives.

References
[1] G. Golub, C. Van Loan, Matrix Computations, Third Edition,

John Hopkins University Press, Baltimore, Maryland, 1996.

[2] J. Proakis et al. Advanced Digital Signal Processing,
Macmillan Publishing Company, New York, NY, 1992.

[3] G. Strang, K. Borre, Linear Algebra, Geodesy, and GPS,
Wellesley-Cambridge Press, Wellesley, MA,1997.

[4] D. Rabinkin, W. Song, M. Vai, and H. Nguyen, “Application
of Parallel Processors to Read-Time Sensor Array
Processing,” Proc. SPIE, 2001.

[5] R. Walke, R. Smith, and G. Lightbody, “20 GFLOPS QR
Processor on a Xilinx Virtex-E FPGA,” Proc. SPIE, 2000.

[6] D. Martinez, “Application of Parallel Processors to Read-
Time Sensor Array Processing,” Proc. IPDPS, 1999.

