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Abstract 
The optimum least-squares solution of linear systems of 
equations is a fundamental operation in many state-of-the-
art communications systems.  These include radar, sonar, 
beamforming, space-time adaptive processing (STAP), 
Global Position System (GPS) navigation, and multiple-
input, multiple-output (MIMO) algorithms where the least-
squares optimality criterion is applied.  These applications 
typically require very large amounts of processing which 
makes implementations in cost-effective, fixed-point 
hardware – in Field Programmable Gate Arrays (FPGAs) or 
Application-Specific Integrated Circuits (ASICs) - the 
preferred choice.  However, the implementation of the 
least-squares problem in these fabrics has the inherent 
challenge of sensitivity to finite-precision effects (aka 
round-off errors) as incurred with fixed-point arithmetic.  
This paper presents an effective methodology for the 
exploration of implementation alternatives of least-squares 
solution of linear systems of equations in fixed-point 
hardware. 

Introduction 
An efficient implementation of a least-squares solution 
depends on essential characteristics of the vectors and 
matrices that represent the system of equations when cast in 
a linear algebra context.  These characteristics include the 
size, symmetry or any other structural characteristic of 
vectors and matrices.  These characteristics, along with 
system requirements for a real-time application drive the 
selection of a suitable algorithm for implementation. 

Traditionally, the implementation of the least-squares 
problem has been done with general-purpose DSP 
processors (DSPs) using floating-point arithmetic.  
Floating-point arithmetic minimizes round-off error making 
the implementation of a least-squares solution less sensitive 
to this type of errors.  On the other hand, these 
implementations tend to be limited in processing speed due 
to the use of a single floating-point processing unit as 
illustrated in Figure 1 below.   

 
Figure 1: Handset performance requirements vs. DSP 

processor capability. 

The continued success of FPGAs and variations of ASICs 
in the deployment of high performance DSP algorithms 
makes them a very appealing implementation fabric.  These 
silicon fabrics, however, are typically tailored for 
implementations with fixed-point arithmetic.  
Consequently, the implementation of the least-squares 
problem in these fabrics has the inherent challenge of 
sensitivity to round-off errors as incurred with fixed-point 
arithmetic. 

Least-Squares Solution to Linear System of 
Equations 
A linear system of equations can be cast in linear algebra 
terms as follows: 

yx =A  
where 

1) A is an mxn matrix containing the coefficients of the 
variables involved in the set of equations, 

2) x is an nx1 vector with n variables involved in the set 
of equations, 

3) y is an mx1 vector with the equations right hand side 
values. 

Depending on the dimensions of the system, and the rank of 
the coefficient matrix A, the system can have different 
types of solution (or no solution at all).  The specific type of 
system of equations we will focus on in this paper is the 
over-determined system of equations.  This is the case 
where the number of equations is larger than the number of 
unknowns (m>n), resulting in a rectangular matrix A.  This 
type of system of equations arises in a number of important 
areas such as radar, sonar, and other sensor array processing 
applications in general.  In these applications, snapshots of 
sensor data form the rows of the matrix and the number of 

 



columns is determined by the number of sensors in the 
array. 

An over-determined system of equations does not have, in 
general, an exact solution.  The solution to this type of 
system requires, instead, a solution in the least-squares 
sense.  The following sub-sections outline the use of 
different matrix factorization techniques to efficiently arrive 
at the least-squares solution. 

QR Factorization 
The coefficient matrix A can be factor as the product of two 
matrices 

A = QR,  

where Q is an mxm orthogonal (unitary in complex case) 
matrix; QQ-T = I, and R is an mxn upper-triangular matrix. 

This factorization enables solution by back-substitution of 
the modified system 

Rx = z,  

where z = QTb, x can then be computed by back-
substitution. 

Cholesky Factorization 
The Cholesky factorization of a symmetric, positive matrix 
is given by 

C = RRT, 

where R is an nxn upper-triangular matrix called the 
Cholesky factor of C. 

To solve the original system of equations Ax = y, the 
covariance matrix of the data in A is constructed prior to 
the solution of the system of equations.  In principle, the 
covariance matrix is defined as 

C = AAT. 

In addition, a cross-correlation is computed to define the 
new right-hand-side of the system of equations.  The system 
of equations can then be solved by finding a solution to the 
modified system  

Rx = z, 

where z = RTp, and p is the cross-correlation vector.  We 
can then compute x via back-substitution.  

 

SVD 
The SVD of an mxn matrix X is defined as the factorization 

TUSVX = , 

where 

1)  is an orthogonal (unitary in the complex 
case) matrix.  The columns of U are the left singular 
vectors of X. 

mxmR∈U

2)  is an orthogonal (unitary in the complex 
case) matrix.  The columns of V are the right singular 
vectors of X. 

nxnR∈V

3) 
),...,( 1 pdiag σσ=S

 is an mxn diagonal matrix 

with p = min(m, n) and pσσσ ,..,, 21  are the 
singular values of X. 

To compute a least-squares solution of the system of 
equations involves creating the Moore-Penrose pseudo 

inverse of X given by , with S
TUVSX ++ = + being 

diagonal formed with the multiplicative inverses of the non-
zero singular values of X placed on the diagonal. 

Overview of the Methodology 
Exploring alternatives early in the design process, while its 
representation is still at a high level of abstraction, affords 
the most leverage in terms of impact on the final 
implementation speed and area cost.  Algorithmic and 
architectural optimization can frequently yield multiple 
orders-of-magnitude impact on the speed-area solution 
space of an algorithm.  Algorithmic synthesis tools that use 
a true top-down DSP design methodology enable a 
collaborative design effort between algorithm developers, 
system engineers and hardware designers by automating 
key process steps at different levels of abstraction for an 
direct implementation in fixed-point arithmetic hardware. 

This paper presents an effective methodology for the 
exploration of implementation alternatives of least-squares 
solution of linear systems of equations in fixed-point 
hardware.  With the many available choices of algorithms, 
and the issues related to finite-precision effects in fixed-
point arithmetic, the amount of effort required from a 
design team to arrive at an effective implementation can be 
formidable.  We will describe a fine-grained parameterized 
model-based library and algorithm synthesis tool that can 
be used to automate the architecture tradeoff analysis and 
finite-precision effects allowing the design team to evaluate 
potential implementation options early and often in the 
design process.  The goal of this methodology is to enable 
achieving an optimum implementation for a particular 
application.  More specifically, this paper will explore 
different alternatives for a least-squares solution 
implementation based on matrix factorization methods.  
These include triangular-orthogonal (QR) factorization, 
Cholesky factorization, and singular value decomposition 
(SVD) techniques. We will demonstrate how this 
methodology can be effectively used for state-of-the-art 
communications systems, and we will discuss in detail the 
architecture, micro-architecture, and finite-precision 
tradeoff analysis of each of these alternatives. 
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