
Embedding Applications within a Storage Appliance
Roger D. Chamberlain

Exegy Inc. and Dept. of Computer Science and Engineering, Washington University in St. Louis
roger@wustl.edu

Introduction1

Storage densities for magnetic media have improved over
the last decade at a rate that exceeds that of Moore’s Law.
The pace of this technological advance has resulted in
dramatic cost decreases for hard disk storage systems, and
as a result, many organizations find it less expensive to
simply “save everything” rather than incur the expense to
determine what must be saved and what can be safely
discarded. Emails, memos, customer correspondence,
current product information, obsolete product information,
raw sensor data from the plant control systems, literally all
of it is stored on magnetic disk, and all of it gets saved.

The “save everything” mentality addresses the short-term
issue of what should be archived vs. what can be deleted.
It, however, raises an important follow-on question: “Now,
how do I find the information I need in all of these terabytes
of saved stuff?”

Traditional storage systems simply retain information. We
have constructed a storage system that can search through
the data stored within it and provide answers to
sophisticated queries. In effect, we have provided
application-level computing capabilities to the storage
system.

The Exegy K•Appliance™
Exegy Inc., in collaboration with Washington University in
St. Louis, has developed the K•Appliance [1,2], a network
appliance that provides network-attached storage
augmented with a high-performance, application-level
computing capability. Traditional network-attached storage
systems provide a file system interface to client computers
(e.g., desktop systems). Our system includes
reconfigurable logic within the appliance, providing the
ability to process data stored on the appliance without
moving them across the network.

As an appliance, users are not expected to develop
applications directly, but to simply invoke functionality
provided by the appliance. The library of functions
currently available includes: exact and approximate text
search, record/field selection operations on structured data,
encryption, decryption, and signature hashing. Functions
currently in development include: biosequence search,
signal processing (e.g., filtering, FFT), and various data
mining primitives.

Typical usage is via the following pattern. Data are stored
on the appliance using writes to the traditional file system
interface. The data are queried by a network socket

The author is on leave from Washington University in St. Louis at Exegy
Inc., 3668 S. Geyer Rd., Suite 300, St. Louis, MO 63127, www.exegy.com

interface that invokes the requested application and returns
the query results via the network to the requesting client
system. Of course, traditional file system reads are
supported as well.

Figure 1 illustrates the internal architecture of an individual
appliance. Data flows off the disks into an FPGA. The
FPGA provides reconfigurable logic that has its function
specified via firmware. We have designed and built a
standard firmware socket that handles data movement
requirements into and out of the FPGA, providing a
consistent application interface to firmware application
modules that are deployed within the FPGA. Results of the
processing performed on the FPGA are delivered to the
processor(s). By delivering the high-volume data directly
to the FPGA, the processor(s) can be relieved of the
requirement of handling the bulk of the original data set.

processor(s)disk
controller

disk
data

to
processor

reconfigurable logic

firmware socket

firmware
application
module(s)

network

Figure 1: Exegy K•Appliance architecture

Development Environment
While application development is typically not the
responsibility of the end user, a robust and efficient
development environment is still essential. Figure 2 shows
the framework for the development of applications on the
K•Appliance. The top three layers represent functionality
that is executed in software on the appliance’s processor(s),
while the bottom two layers represent functionality that is
executed in firmware on the FPGA.

application software

module API

OS level/device drivers

firmware socket

firmware application module(s)

software library
interface

hardware/software
interface

firmware module
interface

Figure 2: Application development environment

The central three layers of this framework are fairly
application independent, supporting data movement
between the application software at the top of the
framework and the firmware application module(s) at the
bottom of the framework.

Another way to view the application decomposition is
shown in Figure 3. The top portion of the pyramid
represents application functionality performed in software,
and the bottom portion of the pyramid represents
application functionality deployed in firmware. The
firmware, with its greater execution speed, is well-matched
to application functions that need to examine a greater data
volume. The software, with its ease of programmability, is
well suited to application functions that have greater
algorithmic complexity.

gr
ea

te
r d

at
a v

ol
um

e

alg
or

ith
m

 co
m

pl
ex

ity higher execution speed

ease of program
m

ing

Application Deployment Pyramid

Compute in
Software

Compute in
Firmware

 Figure 3: Hardware/software application partitioning

We illustrate this decomposition using the example of an
approximate text search application. Consider a search
(within a set of unstructured text files) for matches on the
following query:

(Czar AND Nicholas) NEAR Crimea

In addition, it can be specified that the first word may have
up to two characters different than the literal string (so as to
enable matching the text “Tsar” as well as “Czar”) and that
the NEAR operator is parameterized to require a match
within 1000 characters (i.e., its arguments must reside
within 1000 characters of one another).

In our current implementation of this approximate search
application, the individual keywords in the query (i.e.,
“Czar,” “Nicholas,” and “Crimea”) are found through
firmware (including the approximate matches) and the
logical combinations of these results (i.e., the AND and
NEAR operators) are computed in software. In this way the
firmware considers the bulk of the raw data, and the
software operates on results returned by the firmware. The
client system only receives results that match the complete
query.

Next we consider the more general application
decomposition required in a data mining operation. The
firmware is assigned responsibility for the simple, high
data-rate, repetitive operations that must examine the entire
data set, effectively filtering the raw data into a more

manageable size prior to the higher-level processing. The
software is assigned responsibility for processing the
filtered output looking for high-level semantic information.
This can include probability modeling, knowledge-base
modeling, etc.

Applications
Our first set of applications for the K•Appliance focused on
unstructured text search. Both exact and approximate
keyword search applications were developed [3], and
performance improvements of greater than 200-fold were
reported when compared to a high-end Xeon processor [2].

Our next set of applications is aimed at structured data sets.
When the data are organized as logical records with
individual fields within each record, common low-level
operations to be performed include record selection, in
which individual records are examined for inclusion or
exclusion in the return set, and field selection, in which
particular fields are designated for later inspection.
Performance characterization of these applications is
currently ongoing.

We have also deployed the 3DES encryption/decryption
application as well as the MD5 signature hashing
application on the appliance. The use of the system for
biosequence similarity search is described in [4], and
several signal processing primitives (including FFT and
FIR filtering) are under development.

Conclusions
We describe the Exegy K•Appliance, a network-attached
storage device that supports application-level processing of
very large data sets. Providing as much as 4 TB of storage,
the K•Appliance also addresses the needs of users to filter
their data into useful knowledge. The goal is to make the
data storage a resource, rather than just a repository.

References
[1] R. D. Chamberlain, R. K. Cytron, M. A. Franklin, and R. S.

Indeck, “The Mercury System: Exploiting Truly Fast
Hardware for Data Search,” in Proc. of Int’l Workshop on
Storage Network Architecture and Parallel I/Os, September
2003, pp. 65-72.

[2] M. A. Franklin, R. D. Chamberlain, M. Henrichs, B. Shands,
and J. White, “An Architecture for Fast Processing of Large
Unstructured Data Sets,” in Proc. of 22nd Int’l Conf. on
Computer Design, October 2004, pp. 280-287.

[3] Q. Zhang, R. D. Chamberlain, R. S. Indeck, B. West, and J.
White, “Massively Parallel Data Mining Using
Reconfigurable Hardware: Approximate String Matching,” in
Proc. of Workshop on Massively Parallel Processing, April
2004.

[4] P. Krishnamurthy, J. Buhler, R. D. Chamberlain, M. A.
Franklin, K. Gyang, and J. Lancaster, “Biosequence
Similarity Search on the Mercury System,” in Proc. of the
IEEE 15th Int’l Conf. on Application-Specific Systems,
Architectures and Processors, September 2004, pp. 365-375.

