
1

© H. Kopetz 10/7/2004

TU Wien

From a Federated to an Integrated Architecture
for Dependable Embedded Systems

H. Kopetz
TU Wien

September 2004

2

© H. Kopetz 10/7/2004

Outline

♦ Introduction
♦ Federated versus Integrated Architecture
♦ The Challenge
♦ The Time-Triggered Architecture
♦ Fault Tolerance in the TTA
♦ Conclusion

3

© H. Kopetz 10/7/2004

Examples of Safety Critical Systems--No Backup

Fly-by-wire Airplane: There is no mechanical or hydraulic
connection between the pilot controls and the control surfaces.

Drive-by-wire Car: There is no mechanical or hydraulic
connection between the steering wheel and the wheels.

4

© H. Kopetz 10/7/2004

The 10-9 Challenge
♦ Critical system services must be more reliable than any one of the

components: e.g., System Dependability 1 FIT--Component
dependability 1000 FIT (1 FIT: 1 failure in 109 hours)

♦ Architecture must be distributed and support fault-tolerance to
mask component failures.

♦ System as a whole is not testable to the required level of
dependability.

♦ The safety argument is based on a combination of experimental
evidence about the expected failure modes and failures rates of
fault-containment regions (FCR) and a formal dependability
model that depicts the system structure from the point of view of
dependability.

♦ Independence of the FCRs is a critical issue.

5

© H. Kopetz 10/7/2004

Independence of FCRs

The independence of failures of different FCRs is the
most critical issue in the design of an

ultra-dependable system.

There are two basic mechanisms that compromise the
independence of FCRs
♦ Missing fault isolation among the FCRs
♦ Error propagation--the consequences of a fault, the

ensuing error, propagates to a healthy FCR by an
erroneous message.

6

© H. Kopetz 10/7/2004

Federated Architecture

In a federated architecture each Distributed Application Subsystem
(DAS) is implemented on its own stand-alone distributed hardware
base, consisting of nodes dedicated to jobs and physical
communication channels (a network) among the nodes.
This has the following consequences:
♦ Each DAS is physically separated from other DASes
♦ Clear boundaries of responsibility and error propagation
♦ Limited sharing of hardware and communication resources--many

nodes and networks.
♦ Integration of functions difficult--multiple sensors necessary
♦ In a large system there are many nodes and communication links

(physical contact points).

7

© H. Kopetz 10/7/2004

Examples of DASes Onboard a Car
Climate

Control DAS
Body Elec-
tronic DAS

Ligthning
Control DAS

Multi-
media DAS

Vehicle
Dynamics

DAS

Airbag
DAS

8

© H. Kopetz 10/7/2004

Integrated Architecture

A number of technical and economic advantages could be realized if the
different DASes were integrated into a single architecture
♦ Cost savings by the reduction of nodes, sensors and wiring points

(results also in an increase in hardware reliability).
♦ Better integration of functions--more flexibility
♦ Implementation of fault tolerance simplified
But
♦ Independence of individual DAS compromised--increased potential

of error propagation from one DAS to another DAS
♦ Integration increases complexity and diagnostics
♦ Allocation of responsibility more difficult

9

© H. Kopetz 10/7/2004

The Challenge

The ideal future avionics systems would
combine the complexity management
advantages of the federated approach, but
would also realize the functional integration
and hardware efficiency benefits of an
integrated system.

Hammett Robert. Flight Critical Electronics System Design, IEEE AESS Systems
Magazine, June 2003, p.32

10

© H. Kopetz 10/7/2004

From a Federated to an Integrated Architecture

Fault Tolerant Communication Network

Integrated Architecture:
Backbone Network with
integrated fault-tolerance
Intelligent Sensors and Actuators
connected by field-buses

Federated Architecture:
“Every functions has its own
ECU”

11

© H. Kopetz 10/7/2004

The Time-Triggered Architecture (TTA)

provides an execution environment for real-time applications. It is
♦ a distributed architecture that support fault tolerance, where a node

can be a single chip computer (SoC).
♦ It provides a fault-tolerant global time-base of high precision at

every node.
♦ an integrated architecture, where different application subsystems

(DAS) up to the highest criticality class can be integrated into a
single framework.

♦ a platform architecture that provides technology invariant interfaces
to the application software.

♦ a generic architecture, which can be deployed in different
application domains (e.g., automotive, aerospace, train signaling,
process control, mutimedia) where real-time performance is an issue.

Kopetz, H, Bauer, G. , The Time-Triggered Architecture, Proc. of the IEEE, Jan 2003, Vol 91
p. 112-126

12

© H. Kopetz 10/7/2004

History of the TTA

The TTA has been developed over a time-frame of more than 20
years:
♦ Started in 1979 at the Technical University of Berlin and

continued at the Technical University of Vienna since 1982.
♦ More than 50 Mio US $ have been invested in the TTA.
♦ The TTA is presently deployed in industrial applications at

• Aerospace Applications (Honeywell)
• Railway Signalling (Alcatel)
• Automotive Drive-by-Wire Prototypes (many companies)

♦ On July 1, 2004 the three-year European Integrated Project
DECOS (about 15 Mio US $) was started to further develop
the TTA.

13

© H. Kopetz 10/7/2004

Fault Tolerant Sparse Time Base in the TTA

If the occurrence of events is restricted to some active intervals
with duration π with an interval of silence of duration ∆ between
any two active intervals, then we call the timebase π/∆-sparse, or
sparse for short.

In a sparse time base, instants can be represented by integers.

0 1 2 3 4 5 6 7 8 9

Time

Events are only allowed to occur at subintervals of the timeline

∆ π∆ ππ

14

© H. Kopetz 10/7/2004

Standardized Time Format in the TTA

2-24 sec1 sec240 seconds

Reduce format for a sixteen bit time-stamp
horizon 2-2 seconds, granularity 2-18 seconds

If desired for for efficiency reasons, a shorter time-stamp can be
extracted from this global time representation as shown above.
If periods are power-of-two compatible to the full second, a single
bit (the periodicity bit) can be used to denote the periodicity of an
activity. The phase of the start-of-period can be denoted by the bit
pattern to the right of the periodicity bit.

15

© H. Kopetz 10/7/2004

The TTA is a Platform Architecture

Platform Interface
Layer (PIL)

Different
Implementation

Choices
e.g., TTP, TT Ethernet

Core
Services
(Done)

Platform Interface Layer:
•Encapsulation Services
•Event-Triggered Communication
•Virtual Channels
•Hidden Gateways
•Provision of Legacy Interfaces
•Application Diagnosis Support

•Timely and Deterministic Transmisson
•Fault-Tolerant Clock Synchronization
•Fault Isolation
•Determinism to support TMR
•FCR-Diagnosis (Membership)

DAS B DAS C

Distributed
Application
Systems (DAS)

DAS A DAS D

Core Services (done for TTP)

Technology invariant interface

16

© H. Kopetz 10/7/2004

Fault Hypothesis in the TTA

Fault Hypothesis II

Fault-Hypothesis I

Correct
States

FT
Mechanisms

NGU
Strategy

Normal
Failures

Rare Events

17

© H. Kopetz 10/7/2004

Approach to Safety: The Swiss-Cheese Model

Subsystem
Failure

Catastrophic
System EventMultiple

Layers of
Defenses

Normal State

From Reason, J
Managing the Risk of
Organizational Accidents
1997

Fault Tolerance

Never Give
Up Strategy

Independence of Layers of
Error Detection are important

18

© H. Kopetz 10/7/2004

Fault Containment vs. Error Containment

No Error
Detection

Error
Detection

We do not need an error detector
if we assume fail-silence.

Error detecting FCR must be
independent of the FCR that
has failed--at least two FCRs
are required if a restricted
failure mode is assumed.

19

© H. Kopetz 10/7/2004

Error Containment Region (ECR) in the TTA
In a distributed computer system the consequences of a fault, the
ensuing error, can propagate outside the originating FCR (Fault
Containment Region) by an erroneous message of the faulty node to
the environment.
♦ A propagated error invalidates the independence assumption.
♦ The error detector must be in a different FCR than the faulty unit.
♦ Distinguish between error detection in the time-domain and error

detection in the value domain.
♦ In the TTA, error detection in the time-domain is performed by

the architecture and error detection in the value domain must be
done by the application (TMR).

♦ TMR requires replica determinism at all levels.

20

© H. Kopetz 10/7/2004

TMR Structure for Safety-Critical Tasks

Switch
Guardian I

Switch
Guardian II

V
O
T
E
R

State

State

State

State

State

State

In order to flush out quasi-permanent state errors
caused by a transient fault, the state must be
periodically subject to voting.

State

21

© H. Kopetz 10/7/2004

Fault Hypothesis in the TTA w.r.t. Physical Faults

i. A Node Computer forms a single FCR that can fail in an
arbitrary failure mode (it is not possible to implement two
independent FCRs on the same die).

ii. A communication channel including the central guardian
forms a single FCR that can fail to distribute messages but
cannot generate messages on its own.

iii. A central guardian in the communication system transforms
(SOS) failures to fail-silent failures in the temporal domain.

iv. Error detection is performed by a membership and clique
avoidance algorithms.

v. The system can recover from a single failure within two
TDMA rounds.

22

© H. Kopetz 10/7/2004

Assumption about the Frequency of Faults of SoCs:

Assumed Behavioral Hardware Failure Rates (Orders of Magnitude):

Type of Failure Failure Rate in Fit Source
Transient Node
Failures (fail silent)

<1 000 000 Fit
(MTTF > 1000 hours)

Neutron
bombardment
Aerospace

Transient Node
Failure (non-fail
silent)

<10 000 Fit
(MTTF> 100 000)

Fault Injection
Experiments

Permanent Hardware
Failures

<100 Fit
(MTTF> 10 000 000)

Automotive Field
Data

Tendency: Increase of Transient Failures

23

© H. Kopetz 10/7/2004

Experimental Evidence
Millions of fault injection experiments have been carried out on the TTA
over a period of more than ten years with the support of the EU:

♦Software based (TU Vienna, Austria)
♦Alpha Particle (Chalmers University, Sweden)
♦VLSI-model based (Univ. of Valencia, Spain, Carinthia Tech, Austria)
♦Pin Level (LAAS, Toulouse,France, Univ. of Valencia, Spain)

Error Detection in
the temporal
domain

Ratio of fail-silent to
non-fail-silent failures

Experimental
Evidence

No Error Detector 50:1 FI Measurements
in
PDCS Project

Local Guardian 1000: 1 Fault Injection
FIT Project

Autonomous Central
Guardian

no non-fail silent
failure observed so far

Fault Injection in
FIT/NEXT TTA

24

© H. Kopetz 10/7/2004

Transient Faults may cause Permanent State Errors

Hardware Fault
Computation Error

quasi-permanent state Error

The interaction of a transient hardware fault with the state an cause
a quasi-permanent state error: state erosion

Real Time

Transient failures MTTF: 1000 hours
Permanent failures MTTF: > 1 000 000 hours

25

© H. Kopetz 10/7/2004

The Cause of a Transient Fault

We have identified the following possible causes of a
transient fault
♦ External Disturbances, e.g., high energy radiation

(hardware)
♦ Internal Degradation of the chip hardware: e.g.,

corrosion of a PN junction (hardware)
♦ Heisenbugs, e.g., design error in the synchronization

of processes (software)

26

© H. Kopetz 10/7/2004SAA: South American Anomaly

27

© H. Kopetz 10/7/2004

Intermittent Failures of a Chip causes Transients

Failure Rate
Fits

10

100

1000

10 000

Real Time

Start of intermittent
failures due to physical
defects

Permanent
Failure

In the TTA we can
monitor every single
SOC to detect a
degradation before
a permanent failure
occurs.

100 000

More than half of the transients may be caused by intermittents.

28

© H. Kopetz 10/7/2004

The Distinction between Bohrbugs and Heisenbugs*

♦ Bohrbugs are design errors in the software that cause
reproducible failures. E.g., a logic error in a program.

♦ Heisenbugs are design errors in the software that seem to
generate quasi-random failures. E.g., a synchronization error
that will cause the occasional violation of an integrity
condition.

♦ From a phenomenological point of view, a failure that is
caused by a Heisenbug cannot be distinguished from a
failure caused by transient hardware malfunction.

♦ Experience shows that it is much more difficult to find and
eliminate the Heisenbugs than it is to eliminate the Bohrbugs
from a large software system.

*J. Gray, "Why do Computers Stop and What can be done about it?," Proc. 5th Symp. on
Reliability in Distributed Software and Database Systems, Los Angeles, CA, USA, 1986

29

© H. Kopetz 10/7/2004

The Replacement Strategy

♦ From the observation of a transient failure of a node, it
impossible to identify in a single function node the cause
of the transient.

♦ It is possible to reason about the cause of the transient if
a population of nodes is observed over time.

♦ It is also possible to reason about the cause of the
transient if the malfunctions of a single multifunction
node are observed over time.

30

© H. Kopetz 10/7/2004

Mixed-Criticality TTA Node

Basic Connector Unit

Complex
Connector Unit

S
a
f
e
t
y

1

S
a
f
e
t
y

2

O
t
h
e
r
3

O
t
h
e
r
4

O
t
h
e
r
5

Hardware

Process Input Output malign failures
Mixed-Criticality Node
with 6 Partitions,
controlled by connector
units.

The two safety-critical
partitions depend on the
correctness of the
Basic Connector Unit only.

Safety
Critical

CU

DAS 1 Safety Critical

DAS 2 Safety Critical

benign failures
DAS 3

DAS 4

31

© H. Kopetz 10/7/2004

Critical Parts of a Mixed-Criticality TTA Node

Basic Connector Unit

S
a
f
e
t
y

1

S
a
f
e
t
y

2

Hardware

Process Input Output malign failures
Mixed-Criticality Node
with 6 Partitions,
controlled by connector
units.

The two safety-critical
partitions depend on the
correctness of the
Basic Connector Unit only.

Safety
Critical

CU

DAS 1 Safety Critical

DAS 2 Safety Critical

benign failures
DAS 3

DAS 4

32

© H. Kopetz 10/7/2004

Modular Certification of the Critical Parts

Basic Connector Unit

S
a
f
e
t
y

1

S
a
f
e
t
y

2

Communication Controller

Safety
Critical

Connector
Unit

Each unit
can be certified
in isolation
form each other
unit.

Unintended
interactions are
avoided by
design.

33

© H. Kopetz 10/7/2004

Integration in the TTA

The TTA provides a distributed execution environment for the
different DASes with the following properties:
♦ A job is encapsulated in a partition of a node. A node can

support many partitions.
♦ A job communicates to its environment by the network or by

a private I/O interface.
♦ One or more separated virtual communication channel with

specified temporal properties is allocated to each DAS to link
the ports of the DAS.

♦ A physical wire can host many different virtual networks
with a priori known temporal properties.

♦ Different DASs can interact via a virtual gateway.

34

© H. Kopetz 10/7/2004

Example: Private Semivirtual CAN of a DAS

Fault Tolerant Communication Network

Blue nodes are connected by a virtual CAN networks
Hidden physical gateway

35

© H. Kopetz 10/7/2004

Two-level Design Methodology in the TTA

A two level design methodology that is supported by tools from
TTTech, a spinoff company from the TU Wien (www.tttech.com):
System Level specifies the interactions among components by
designing the Temporal Firewall Interfaces:
♦ Data items that are exchanged among the subsystems
♦ Instants when the TT communication system accesses the data
♦ Abstract model of the meaning of the data.

Component Level is concerned with the detailed Software Design:
♦ The host computer provides the intended function, taking the

available temporal firewall specifications as constraints.
♦ Validation of a component with respect to the temporal firewalls

can be performed in isolation.

36

© H. Kopetz 10/7/2004

PIM vs. PSM of a DAS

♦ The the platform independent model of a DAS consists of
a set of Jobs that communicate via interfaces containing
ports, connected to a virtual communication channel.

♦ The platform specific model (PSM) of a DAS is a model
where the jobs have been assigned to partitions of nodes
and the virtual channels to physical TT channels.

♦ The development of the PSM is constrained by
•Dependability requirements (replicated jobs must be in

partitions of independent FCRs)
•The resource constraints of the nodes
•The resource constraints of the physical TT channels

37

© H. Kopetz 10/7/2004

Model-Driven Design

Partition the application
into modules and
specify the message
interfaces among the
modules

Domain Specific Application Model
(e.g. expressed in UML)

Platform Independent Model (PIM)
expressed in a Programming Language

Platform Specific Model (PSM)

Map the model to the
selected target platform
considering Quality of
Service (QoS)
Properties (e.g.,
Timeliness, Replication)

38

© H. Kopetz 10/7/2004

Diagnostic Subsystem of the TTA

♦ Independent DAS that collects and evaluates diagnostic
information on line

♦ Two sources of diagnostic information
•System Based: out of norm assertions, message loss,

restart, difficulties in agreement, failures that are
masked by fault tolerance

•Application based: jobs generate diagnostic
information based on their application know how (e.g.,
sensor behavior)

♦ Diagnostic information is evaluated on-line by a diagnostic
job

39

© H. Kopetz 10/7/2004

Future Developments

At present, the TTA uses the TTP/C protocol chips which
support transmission speeds of up to 25 Mbits/second.
We are extending the TTA to higher speeds on TT Ethernet:
♦ Distinguishes between two traffic classes: TT and ET
♦ ET is fully compatible with standard Ethernet
♦ TT traffic is standard Ethernet format but routed through

the switch with constant delay (< 5 µsec) and minimal
jitter (< 1 µsec)

♦ First version of TT Ethernet switch available before end of
2004.

♦ Gigabit Ethernet System under consideration.

40

© H. Kopetz 10/7/2004

Conclusion: Benefits of the TTA

The TTA is an integrated architecture for the implementation of large
distributed real-time control system in high-dependability applications.
The TTA realizes the positive aspects of integration such as
♦ significant reduction of the software cost by the strong support for

composability, diagnosis, and the reuse of services.
♦ significant reduction of the hardware cost and of the wiring points

(reliablity improvement)
♦ architectural support of the implementation of fault tolerance
♦ increased potential and flexibility of function integration

while minimizing the negative impact of integration
♦ error propagation from one DAS to another DAS
♦ blurring of responsibility during system integration
♦ difficulties in diagnostics.

