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Examples of Safety Critical Systems--No Backup 

Fly-by-wire Airplane:  There is no mechanical or hydraulic 
connection between the pilot controls and the control surfaces.

Drive-by-wire Car: There is no mechanical or hydraulic 
connection between the steering wheel and the wheels.
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The 10-9 Challenge
♦ Critical system services must be more reliable than any one of the 

components: e.g., System Dependability 1 FIT--Component 
dependability 1000 FIT (1 FIT: 1 failure in 109 hours)

♦ Architecture must be distributed and support fault-tolerance to 
mask component failures.

♦ System as a whole is not testable to the required level of 
dependability.

♦ The safety argument is based on a combination of experimental
evidence about the expected failure modes and failures rates of 
fault-containment regions (FCR) and a formal dependability 
model that depicts the system structure from the point of view of 
dependability.

♦ Independence of the FCRs is a critical issue.
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Independence of FCRs

The independence of failures of different FCRs is the 
most critical issue in the design of  an 

ultra-dependable system.

There are two basic mechanisms that compromise the 
independence of FCRs
♦ Missing fault isolation among the FCRs
♦ Error propagation--the consequences of a fault, the 

ensuing error, propagates to a healthy FCR by an 
erroneous message. 
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Federated  Architecture

In a federated architecture each Distributed Application Subsystem
(DAS) is implemented on its own stand-alone distributed hardware 
base, consisting of nodes dedicated to jobs  and physical 
communication channels (a network) among the nodes. 
This has the following consequences:
♦ Each DAS is physically separated from other DASes
♦ Clear boundaries of  responsibility and error propagation
♦ Limited sharing of hardware and communication resources--many 

nodes and networks.
♦ Integration of functions difficult--multiple sensors necessary
♦ In a large system there are many nodes and communication links 

(physical contact points).
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Examples of DASes Onboard a Car
Climate

Control DAS
Body Elec-
tronic DAS

Ligthning
Control DAS

Multi-
media DAS

Vehicle
Dynamics

DAS

Airbag
DAS
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Integrated Architecture

A number of technical and economic advantages could be realized if the 
different DASes were integrated into a single architecture
♦ Cost savings by the reduction of nodes, sensors and wiring points 

(results also in an increase in hardware reliability).
♦ Better integration of functions--more flexibility
♦ Implementation of fault tolerance simplified
But
♦ Independence of individual DAS compromised--increased potential 

of error propagation from one DAS to another DAS
♦ Integration increases complexity and diagnostics
♦ Allocation of responsibility more difficult
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The Challenge

The ideal future avionics systems would 
combine the complexity management 
advantages of the federated approach, but 
would also realize the functional integration 
and hardware efficiency benefits of an 
integrated system.

Hammett Robert.  Flight Critical Electronics System Design, IEEE AESS Systems 
Magazine, June 2003,  p.32
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From a Federated to an Integrated Architecture

Fault Tolerant Communication  Network

Integrated Architecture:
Backbone Network with
integrated fault-tolerance
Intelligent Sensors and Actuators
connected by field-buses

Federated Architecture:
“Every functions has its own 
ECU”
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The Time-Triggered Architecture (TTA)

provides an execution environment for real-time applications.  It is
♦ a distributed architecture that support fault tolerance, where a node 

can be a single chip computer (SoC).
♦ It provides a fault-tolerant global time-base of high precision at 

every node. 
♦ an integrated architecture, where different application subsystems 

(DAS) up to the highest criticality class can be integrated into a 
single framework.

♦ a platform architecture that provides technology invariant interfaces 
to the application software. 

♦ a generic architecture, which can be deployed in different 
application domains (e.g., automotive, aerospace, train signaling, 
process control, mutimedia) where real-time performance is an issue.

Kopetz, H,   Bauer, G. ,  The Time-Triggered Architecture, Proc. of the IEEE, Jan 2003, Vol 91 
p. 112-126
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History of the TTA

The TTA has been developed over a time-frame of more than 20 
years:
♦ Started in 1979 at the Technical University of Berlin and 

continued at the  Technical University of Vienna since 1982.
♦ More than 50 Mio US $ have been invested in the TTA.
♦ The TTA is presently deployed in industrial applications at

• Aerospace Applications (Honeywell)
• Railway Signalling (Alcatel)
• Automotive Drive-by-Wire Prototypes (many companies)

♦ On July 1, 2004 the three-year European Integrated Project 
DECOS (about 15 Mio US $) was started to further develop 
the  TTA.
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Fault Tolerant Sparse Time Base in the TTA

If the occurrence of events is restricted to some active intervals  
with duration π with an interval of silence of duration ∆ between 
any two active intervals, then we call the timebase π/∆-sparse, or 
sparse for short. 

In a sparse time base, instants can be represented by integers.

0 1 2 3 4 5 6 7 8 9

Time

Events       are only allowed to occur at subintervals of the timeline

∆ π∆ ππ
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Standardized Time Format in the TTA

2-24 sec1 sec240 seconds

Reduce format for a sixteen bit time-stamp
horizon 2-2 seconds, granularity 2-18 seconds

If desired for for efficiency reasons,  a shorter time-stamp can be 
extracted from this global time representation as shown above.
If periods are power-of-two compatible to the full second,  a single 
bit (the periodicity bit) can be used to denote the periodicity of an 
activity.  The phase of the start-of-period can be denoted by the bit 
pattern to the right of the periodicity bit.
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The TTA is a Platform Architecture

Platform Interface
Layer (PIL)

Different 
Implementation 

Choices
e.g., TTP,   TT Ethernet

Core
Services
(Done)

Platform Interface Layer:
•Encapsulation Services
•Event-Triggered Communication
•Virtual Channels
•Hidden Gateways
•Provision of Legacy Interfaces
•Application Diagnosis Support

•Timely and Deterministic Transmisson
•Fault-Tolerant Clock Synchronization
•Fault Isolation
•Determinism to support TMR
•FCR-Diagnosis (Membership)

DAS B DAS C

Distributed
Application
Systems (DAS)

DAS A DAS D

Core Services (done for TTP)

Technology invariant interface
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Fault Hypothesis in the TTA

Fault Hypothesis II

Fault-Hypothesis I

Correct
States

FT
Mechanisms

NGU
Strategy

Normal
Failures

Rare Events
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Approach to Safety: The Swiss-Cheese Model

Subsystem
Failure

Catastrophic
System EventMultiple

Layers of
Defenses

Normal State

From Reason, J
Managing the Risk of 
Organizational Accidents
1997

Fault Tolerance

Never Give  
Up Strategy 

Independence of Layers of
Error Detection are important
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Fault Containment vs.  Error Containment

No Error
Detection

Error
Detection

We do not need an error  detector
if we assume fail-silence.

Error detecting FCR must be
independent of the FCR that 
has failed--at least two FCRs
are required if a restricted 
failure mode is assumed.



19

© H. Kopetz  10/7/2004

Error Containment Region (ECR) in the TTA
In a distributed computer system the consequences of a fault, the 
ensuing error,  can propagate outside the originating FCR (Fault
Containment Region) by an erroneous message of the faulty node to 
the environment. 
♦ A propagated error invalidates the independence assumption.
♦ The error detector must be in a different FCR than the faulty unit.
♦ Distinguish between error detection in the time-domain and error 

detection in the value domain.
♦ In the TTA,  error detection in the time-domain is performed by 

the architecture and error detection in the value domain must be 
done by the application (TMR).

♦ TMR requires replica determinism at all levels.
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TMR Structure for Safety-Critical Tasks

Switch
Guardian I

Switch
Guardian II

V
O
T
E
R

State

State

State

State

State

State

In order to flush out quasi-permanent state errors
caused by a transient fault,  the state must be 
periodically subject to voting.

State
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Fault Hypothesis in the TTA w.r.t. Physical Faults

i. A Node Computer forms a  single FCR that can fail in an 
arbitrary failure mode (it is not possible to implement two 
independent FCRs on the same die).

ii. A communication channel including the central guardian 
forms a single FCR that can fail to distribute messages but 
cannot generate messages on its own.

iii. A central guardian in the communication system transforms 
(SOS) failures to fail-silent failures in the temporal domain.

iv. Error detection is performed by a membership and clique 
avoidance algorithms.

v. The system can recover from a single failure within two 
TDMA rounds.
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Assumption about  the Frequency of Faults of SoCs:

Assumed Behavioral Hardware Failure Rates (Orders of Magnitude):

Type of Failure Failure Rate in Fit Source
Transient Node 
Failures (fail silent)

<1 000 000  Fit
(MTTF > 1000 hours)

Neutron 
bombardment
Aerospace

Transient Node 
Failure (non-fail 
silent)

<10 000 Fit
(MTTF> 100 000)

Fault Injection 
Experiments 

Permanent Hardware 
Failures

<100 Fit
(MTTF> 10 000 000)

Automotive Field 
Data

Tendency:  Increase of Transient Failures
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Experimental Evidence
Millions of fault injection experiments have been carried out on the TTA 
over a period of more than ten years with the support of the EU:

♦Software based (TU Vienna, Austria)
♦Alpha Particle (Chalmers University, Sweden)
♦VLSI-model based (Univ. of Valencia, Spain, Carinthia Tech, Austria)
♦Pin Level (LAAS, Toulouse,France, Univ. of Valencia, Spain)

Error Detection in 
the temporal 
domain

Ratio of fail-silent to 
non-fail-silent failures

Experimental
Evidence

No Error Detector 50:1 FI Measurements 
in 
PDCS Project

Local Guardian 1000: 1 Fault Injection
FIT Project 

Autonomous Central 
Guardian

no non-fail silent 
failure observed so far

Fault Injection in
FIT/NEXT TTA



24

© H. Kopetz  10/7/2004

Transient Faults may cause Permanent State Errors

Hardware Fault
Computation Error

quasi-permanent state Error

The interaction of a transient hardware fault with the state an cause
a quasi-permanent state error:  state erosion

Real Time

Transient failures MTTF:    1000 hours
Permanent failures MTTF:  > 1 000 000 hours
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The Cause of a Transient Fault

We have identified the following possible causes of a 
transient fault
♦ External Disturbances,  e.g.,   high energy radiation 

(hardware)
♦ Internal Degradation of the chip hardware: e.g., 

corrosion of a PN junction (hardware)
♦ Heisenbugs, e.g., design error in the synchronization 

of processes (software)
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Intermittent Failures of  a Chip causes Transients

Failure Rate
Fits

10

100

1000

10 000

Real Time

Start of intermittent
failures due to physical
defects

Permanent
Failure

In the TTA we can
monitor every single
SOC to detect a 
degradation before
a permanent failure
occurs.

100 000

More than half of the transients may be caused by intermittents.
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The Distinction between Bohrbugs and Heisenbugs*

♦ Bohrbugs are design errors in the software that cause 
reproducible failures. E.g.,  a logic error in a program.

♦ Heisenbugs are design errors in the software that seem to 
generate quasi-random failures. E.g., a synchronization error 
that will cause the occasional violation of an integrity 
condition. 

♦ From a phenomenological point of view,   a failure that is 
caused by a Heisenbug cannot  be distinguished from a 
failure caused by transient hardware malfunction.  

♦ Experience shows that it is much more difficult to find and 
eliminate the Heisenbugs than it is to eliminate  the Bohrbugs
from a large software system.

*J. Gray, "Why do Computers Stop and What can be done about it?," Proc. 5th Symp. on 
Reliability in Distributed Software and Database Systems, Los Angeles, CA, USA, 1986
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The Replacement Strategy 

♦ From the observation of a transient failure of  a node,  it 
impossible to identify in a single function node the cause 
of the transient.

♦ It is possible to reason about the cause of the transient if 
a population of nodes is observed over time.

♦ It is also possible to reason about the cause of the 
transient if the malfunctions of a single multifunction
node are observed over time.
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Mixed-Criticality TTA Node 

Basic Connector Unit

Complex 
Connector Unit

S
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1
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h
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r
3

O
t
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O
t
h
e
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5

Hardware 

Process Input Output malign failures
Mixed-Criticality Node
with 6 Partitions, 
controlled by connector
units.

The two safety-critical
partitions depend on the 
correctness of the 
Basic Connector Unit only.

Safety 
Critical

CU

DAS 1 Safety Critical 

DAS 2 Safety Critical 

benign failures
DAS 3

DAS 4
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Critical Parts of a Mixed-Criticality TTA Node 

Basic Connector Unit

S
a
f
e
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1

S
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2

Hardware 

Process Input Output malign failures
Mixed-Criticality Node
with 6 Partitions, 
controlled by connector
units.

The two safety-critical
partitions depend on the 
correctness of the 
Basic Connector Unit only.

Safety 
Critical

CU

DAS 1 Safety Critical 

DAS 2 Safety Critical 

benign failures
DAS 3

DAS 4
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Modular Certification of the Critical Parts

Basic Connector Unit

S
a
f
e
t
y 

1

S
a
f
e
t
y 

2

Communication Controller 

Safety 
Critical

Connector 
Unit

Each unit
can be certified
in isolation
form each other
unit.

Unintended 
interactions are
avoided by
design.
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Integration in the TTA

The TTA provides a distributed execution environment for the 
different DASes with the following properties:
♦ A job is encapsulated in a partition of a node. A node can 

support many partitions.
♦ A job communicates to its environment by the network or by 

a private I/O interface.
♦ One or more separated virtual communication channel with 

specified temporal properties is allocated to each DAS to link 
the ports of the DAS. 

♦ A physical wire can host many different virtual networks 
with a priori known temporal properties.

♦ Different DASs can interact via a virtual gateway.
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Example:  Private Semivirtual CAN of a DAS

Fault Tolerant Communication  Network

Blue nodes are connected by a virtual CAN networks
Hidden physical gateway
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Two-level Design Methodology in the TTA

A two level design methodology that is supported by tools from 
TTTech, a spinoff company from the TU Wien  (www.tttech.com):
System Level specifies the interactions among components by 
designing the  Temporal Firewall Interfaces:
♦ Data items that are exchanged among the subsystems
♦ Instants when the TT communication system accesses the data
♦ Abstract model of the meaning of the data.

Component Level is concerned with the detailed Software Design:
♦ The host computer provides the intended function, taking the 

available temporal firewall specifications as constraints.
♦ Validation of a component with respect to the temporal firewalls

can be performed in isolation.
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PIM vs. PSM  of a DAS

♦ The the platform independent model  of a DAS consists of 
a set of Jobs that communicate via interfaces containing 
ports, connected to a virtual communication channel.

♦ The platform specific model (PSM) of a DAS is a  model 
where  the jobs have been assigned to partitions of nodes 
and the virtual channels to physical TT channels.

♦ The development of the PSM is constrained by
•Dependability requirements (replicated jobs must be in 

partitions of independent FCRs)
•The resource constraints of the nodes
•The resource constraints of the physical TT channels
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Model-Driven Design

Partition the application 
into modules and 
specify the  message 
interfaces among the 
modules

Domain Specific Application Model
(e.g. expressed in UML)

Platform Independent  Model (PIM)
expressed in a Programming Language

Platform Specific Model (PSM)

Map the model to the 
selected target platform 
considering Quality of 
Service  (QoS) 
Properties (e.g., 
Timeliness, Replication)
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Diagnostic Subsystem  of the TTA

♦ Independent DAS that collects and evaluates diagnostic 
information on line

♦ Two sources of diagnostic information
•System Based: out of norm assertions, message loss, 

restart, difficulties in agreement, failures that are 
masked by fault tolerance

•Application based:  jobs generate diagnostic 
information based on their application know how ( e.g., 
sensor behavior)

♦ Diagnostic information is evaluated on-line by a diagnostic 
job
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Future Developments

At present,  the TTA uses the TTP/C protocol chips which 
support transmission speeds of up to 25 Mbits/second.
We are extending the TTA to higher speeds on TT Ethernet:
♦ Distinguishes between two traffic classes: TT and ET
♦ ET is fully compatible with standard Ethernet
♦ TT traffic is standard Ethernet format but routed through 

the switch with constant delay (< 5 µsec) and minimal
jitter (< 1 µsec)

♦ First version of TT Ethernet switch available before end of 
2004.

♦ Gigabit Ethernet System under consideration.
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Conclusion:  Benefits of the TTA

The TTA is an integrated architecture for the implementation of large 
distributed real-time control system in high-dependability applications. 
The TTA realizes the positive aspects of integration such as
♦ significant reduction of the software cost by the strong support for 

composability, diagnosis, and the reuse of services.
♦ significant reduction of the hardware cost and of the wiring points 

(reliablity improvement)
♦ architectural support of the implementation of fault tolerance
♦ increased potential and flexibility of function integration

while minimizing the negative impact of integration 
♦ error propagation from one DAS to another DAS
♦ blurring of responsibility during system integration
♦ difficulties in diagnostics.




