

- Computer systems are the backbone of key national infrastructure and critical DoD systems
 - □ Virtually all important transactions involve massive amounts of software and multiple computer networks
 - **DoD** future vision is "network-centric warfare"
- While computational performance is increasing, productivity and effectiveness are not keeping up
 - **Cost of building and maintaining systems is growing out of control**
 - **Systems have short lifespans with decreasing ROI**
 - **Demands on expertise of users are constantly increasing**
 - □ Users have to adapt to system interfaces, rather than vice versa
- As a result, systems have grown more complex, more fragile, and more difficult to develop

We need to change the game

Ref: Defense Systems Management College

Developing Cognitive Systems:

Systems that know what they're doing

• A cognitive system is one that

- □ can reason, using substantial amounts of appropriately represented knowledge
- □ can learn from its experience so that it performs better tomorrow than it did today
- □ can explain itself and be told what to do
- can be aware of its own capabilities and reflect on its own behavior
- □ can respond robustly to surprise

- ...reflect on what goes wrong when an anomaly occurs and anticipate its occurrence in the future
- Increase of the second term of term of
- ...be configured and maintained by non-experts
- ...reconfigure themselves in response to environmental changes and mission events
- Interpretent set of the effort to develop and maintain software
- ...thwart adversarial systems that don't know what they're doing
- ...preserve "corporate memory" to ease transitions for rotational personnel

Four Tiers of Agile Processing

ACIP Program Vision

ACIP Phase I

10/7/2004 RBG

- Fantastic Response!!!
- Participation Mix (Including Subs)
 - **9 Defense Contractors**
 - □ 11 Research Laboratories
 - **51** Universities
 - **30** Commercial Companies

Broad Multi-Disciplinary Coverage required for System Innovation

Large Diverse and Robust Teams Resulted in the Best Concepts

Study Technical Framework Concept has Emerged

Funded ACIP Efforts

COGnitive ENGine Technology (COGENT)
Raytheon Company - Network Centric Systems

Polymorphous Cognitive Agent Architecture (PCAA)
Lockheed Martin Advanced Technology Labs

CEARCH: Cognition Enabled Architecture
University of Southern California/ISI

Information Sciences Institute

- Reservoir Labs Inc Cognitive Processing Hardware and Software elements
- Intelligent Automation Inc. Hardware Architectures for Flexible Component Based Hybrid Cognitive Systems
- Hoplite Systems LLC Cognitive Processing Hardware Elements
- Cardinal Research LLC Cognitive Processing Hardware Elements
- Saffron Technologies Associative Memory Hardware Elements for Cognitive Systems (Funded by AFRL)

Cognitive Technology Classification

Reasoning Algorithms	Symbolic (S) Probabilistic (P) Hybrid (H)	Ray	LM	ISI	Learning Algorithms	Symbolic (S) Probabilistic (P) Hybrid (H)	Ray	LM	ISI	Knowledge Representation Algorithms	Symbolic (S) Probabilistic (P) Hybrid (H)	Ray	' LN	1 ISI
1st Order Reasoning	S		Х		Abductive Learning	Н		Х		1st Order Logic (with extensions)	S	Х		Х
Abductive Reasoning	S,P,H	Х	Х		Abstraction	Н	Х			Bavesian Classifier	Р			
Analogical Reasoning	S,H	Х			Analogical Learning	S			Х	Bavesian Networks	P.H	Х		+
Bayesian Networks	Р				Artificial Neural Networks	Р		Х		Case -based	S			X
Case-based Reasoning	S,H				Associative	Н	Х			Causal Notworks	<u> </u>	Y		
Causal Reasoning	Р	Х			Bayesian Learning	Р		Х		Causal Networks		∧ ∨	-	+'
Common Sense Reasoning	S	Х			Chunking	Н	Х				П	Å		V
Counterfactual Reasoning	S				Classification Learning	Н				Decision Trees	H	X		X
Deductive Inference	S	Х			Clustering	P,H	Х			Episodic	Н		Х	
Defeasible Reasoning	Н		Х		Constructing Analogies	S	Х			Frames	Н	Х		
Forward & Backward Chaining	S				Co-training	Н				Fuzzy Logic	Н		Х	
Fuzzy Reasoning	Н		Х		Data Mining	Н				Horn Clause Program	S			
Game Theory - Optimization	Н				Decision Trees	Н		Х		Influence Diagrams	Н	Х		
Goal-oriented Planning	S			Х	Dimensionality Reduction	Н				Knowledge Acquisition	Н			
Heuristic Meta-reasoning	Н			Х	Evolutionary Search	Н			Х	Logical (Prop. FOI Frame-based)	S			+
Inductive Reasoning	S		Х		Genetic Algorithms	P		X			S		X	
Logical Pattern Matching	S				Inductive Learning	S		X		Markey Medele	D	v		V
Logical Unification	S				Instance-based Learning	P		X		Multi lover Neurol Net		^		^
Markov Processes	Р				Learning from Advice	H.	Х				P	V	_	X
Mathematical Programming	Н				Network Construction	P	~	-		Ontologies	H	X		X
Maximum Likelihood	Р	Х			Parameter Learning	P	Х			Production System	S			
Meta-meta Reasoning	S			Х	Plan recognition	H	~			Propositional Logic	Н	Х		
Modal Intuitionistic, Higher Order Reasoning	S		Х		Reinforcement Learning	РН	X	X	X	Reactive Plan	S			
Model-based Reasoning	Н	Х			Relational Learning	s s	X		~	Relational Models	Н	Х		
Non-monotonic Reasoning	S				Rule Generation Composition & Specialization	S S	~	-		Rule-based Systems	Н			\top
Optimal decisions - Min-Max, Auctions	Р	Х			Statistical Clustering	P		X		Self-knowledge	Н			
Pattern Matching	Н				Statistical Learing (pearest neighbor, approx)	P		^	Y	Semantic Nets	S			+
Probabilistic Constraint Satisfaction	Н	Х	Х	Х	Supervised Learning	P				Situation Calculue	6	Y		
Resource-limited Theorem Proving	S		Х	Х	Support Vector Mechine	P P	v	-	^		D	Λ	-	<u> </u>
SAT - Constraint Satisfaction	S	Х				r	٨				r	V	-	+
Special Purpose Reasoning Algorithms	S			Х							Н	X		
Temporal Reasoning	S,P,H	Х								Type Ontologies and Constraints	S			Х
Utility Theory	Р	Х												
Well-formedness Reasoning	S		1	Х										

Cognitive Services

10/7/2004 RBG

Cognitive Computing Requires Innovation

Classical Computing

- Markovian –current state only
- Processor-oriented; favors regular addressing
- Procedural, results oriented – apply this function next

- Key operations: arithmetic & simple scalar decision making
- Single deterministic result
- Parallelism difficult to extract
- Functional composition determined at compile time
- Largely static resource management

Cognitive Processing

- History of prior results guides next: "learning"
- Memory-oriented; unpredictable access patterns, with metadata guiding access
- Goal oriented with multiple, possibly incompatible objectives,
- Process oriented history + new perceptions => new knowledge
- Context oriented computation based on metadata from prior results
- Key operations: wide spectrum including complex pattern matching
- Often multiple "acceptable" results
- Speculation, futures a first class activity
- Functional composition determined at run-time
- Dynamic resource management (Reasoning vs Learning Balance)

ACIP Strawman Framework

Potential New Research Ideas!

Leveraging Embedded Computing Workshop Ideas Chaired by MIT LL and ISI

Future Role of Embedded Computing Devices: GP, DSP, GPU, NIC, FPGA, ASIC

Physical (COTS) PCA Systems

Software Developer's Assistant

Embedded Computing Complexity Challenge

Embedded Software Developer

The Solution: Cognitive Software Developer's Assistant

Runtime Assistant Cognitive SW Development &

The Future is Yours

Become an DARPA Program Manager!!