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Generalizations of Moore’s LawGeneralizations of Moore’s Law
Exponential 
trends in:

More 
functions*   
per chip

Increased 
performance

Reduced 
energy per 
operation

Decreased 
cost per 
function    
(the principal 
driver)

* transistors, 
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High-Level CMOS Technology Metrics
– What are the Limits ?

High-Level CMOS Technology Metrics
– What are the Limits ?

• Component Diversity (integrated logic, memory, analog, RF, …)

• Cost/Component (e.g., µ¢/gate or µ¢/bit in an IC)

• Component Density (e.g., gates/cm2 or bits/cm2)

• Logic Gate Delay (time for a gate to switch logic states)

• Energy Efficiency (energy/switch and energy/time)

• Mfg. Cycle Time (determines time-to-market for new 
designs as well as rate of yield learning)

All of these are limited by multiple factors inter-linked into a complex 
“tradeoff space.”  We can only touch on a few of the issues today !



State-of-the-Art CMOS in 2004State-of-the-Art CMOS in 2004
• ITRS Technology Node: 90 nm (half-pitch of DRAM metal lines)

• 4T-Gates/cm2: 37x106  (150 million transistors/cm2)

• 6T-eSRAM bits/cm2: 108                (600 million transistors/cm2)

• Cost/Gate (4T): 40 µ¢ (high volume; chip area = 1 cm2)

• Cost/eSRAM bit: 10 µ¢       (high volume; chip area = 1 cm2)

• Gate Delay 24 ps * (for 2-input, F.O. = 3 NAND)

• Switching Energy 0.5 fJ * (for inverter, half-cycle)

• Passive Power 6 nW * (per minimum-size transistor)

• Min. Mfg. Cycle Time 10 days (or 3 mask levels/day)

* Values at extreme tradeoff for MPU application
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Scaling -- Traditional Enabler of Moore’s Law*Scaling -- Traditional Enabler of Moore’s Law*
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Can We Extend
the Recent 0.7x/2-year Litho Scaling Trend ?

Can We Extend
the Recent 0.7x/2-year Litho Scaling Trend ?
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For lithography, it’s a question of cost and control/parametric-yield !
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A “Bag of Tricks” for Optical-ExtensionA “Bag of Tricks” for Optical-Extension
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Of course : increasing complexity  increasing cost !



Amortization of Mask Cost @ 130nmAmortization of Mask Cost @ 130nm
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~ 1 million units required to get within 10% of asymptotic cost !
(and getting worse with continued scaling)

Significant motivation
for some form of “mask-less lithography” !



Of course, overall scaling is limited
by more than just lithography !

Of course, overall scaling is limited
by more than just lithography !

• Growing Significance of Non-Ideal Device-Scaling Effects:
ION vs. IOFF tradeoff
unfavorable ρ and L scaling for interconnects

• Approaching Limits of Materials Properties
Heat removal and temperature tolerance
CMAX vs. leakage tradeoff for gate dielectric
CMIN vs. mechanical-integrity tradeoff for inter-metal dielectric 

• Increases in Manufacturing Complexity/Control Requirements
cost and yield of increasingly complex process flows
metrology and control of LGATE, TOX, doping, etc. 

• Affordability of R&D Costs
development of more complex and “near cliff” technologies
design of more complex circuits with “less ideal” elements
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ITRS Highlights Scaling Barriers, e.g.:ITRS Highlights Scaling Barriers, e.g.:

Production Year: 2001 2004 2007 2010 2013 2016

Litho Half-Pitch [nm]: 130 90 65 45 32 22

Overlay Control [nm]: 45 32 23 18 13 9

Gate Length [nm]: 65 37 25 18 13 9

CD Control [nm]: 6.3 3.3* 2.2 1.6 1.2 0.8

TOX (equivalent) [nm]: 1.3-1.6 1.2 0.9 0.7 0.6 0.5

IGATE (LMIN) [µA/µm]: - 0.17 0.23 0.33 1 1.67

ION (NMOS) [µA/µm]: 900 1110 1510 1900 2050 2400

IOFF (NMOS) [µA/µm]: 0.01 0.05 0.07 0.1 0.3 0.5

Interconnect ΚEFF: - 3.1-3.6 2.7-3.0 2.3-2.6 2.0-2.4 <2.0



Another Interconnect-Scaling IssueAnother Interconnect-Scaling Issue

Wire width < mean-free-path of electrons
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2004   LG = 37-nm   Transistor2004   LG = 37-nm   Transistor

TOX(equiv.) = 1.2 nm



Can Some Hi-K Dielectric Replace SiON ? Can Some Hi-K Dielectric Replace SiON ? 

Sub-nm SiON:
• mobility
• uniformity
• leakage

Source: Intel



In general, continued transistor scaling
requires new materials, processes, …

In general, continued transistor scaling
requires new materials, processes, …

Selective-epi raised source/drain
for shallow junctions & reduced
short-channel effects

P-WELL

STI STI
SOURCE DRAIN

GATE

Si-Substrate

Halo I2

Etches for new 
materials that achieve  
profile, CD control, 
and selectivity

Metal gate electrode to 
reduce gate depletion

High-κ gate dielectric 
for reducing gate 
current with thin Tox

Strained channel for
improved mobility

Doping and annealing 
techniques for shallow 
abrupt junctions

Ni-silicide process for low resistance
at short gate lengths (near term)



… and, eventually new structures… and, eventually new structures
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Potential FET Enhancements ?Potential FET Enhancements ?
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Calculations by T. Skotnicki



At PQE 2004, Professor Mark Lundstrom
expressed the outlook:

“Sub-10nm MOSFETs will operate, but …

At PQE 2004, Professor Mark Lundstrom
expressed the outlook:

“Sub-10nm MOSFETs will operate, but …

- on-currents will be ~0.5xIballistic, off-currents high,
- 2D electrostatics will be hard to control,
- parasitic resistance will degrade performance,
- device to device variations will be large,

and
- ultra-thin bodies and hyper-abrupt junctions
will be essential”    



 

Logic Device 
Technologies 
 
 
 

Performance Architecture 
compatible 

Stability 
and 

reliability 

CMOS 
compatible 

Operate 
temp 

Energy 
efficiency

Sensitivity 
∆(parameter) Scalability

1D 
Structures 2.3/2.2 2.2/2.9 1.9/1.2 2.3/2.4 2.9/2.9 2.6/2.1 2.6/2.1 2.3/1.6 

RSFQ 
Devices 2.7/3.0 1.9/2.7 2.2/2.8 1.6/2.2 1.1/2.7 1.6/2.3 1.9/2.8 1.0/2.1 

Resonant 
Tunneling 
Devices 

2.6/2.0 2.1/2.2 2.0/1.4 2.3/2.2 2.2/2.4 2.4/2.1 1.4/1.4 2.0/2.0 

Molecular 
Devices 1.7/1.3 1.8/1.4 1.6/1.4 2.0/1.6 2.3/2.4 2.6/1.3 2.0/1.4 2.6/1.3 

Spin 
Transistor 2.2/1.7 1.7/1.6 1.7/1.7 1.9/1.4 1.6/2.0 2.3/2.1 1.4/1.7 2.0/1.4 

SETs 1.1/1.2 1.7/1.2 1.3/1.1 2.1/1.4 1.2/1.8 2.6/2.0 1.0/1.0 2.1/1.7 

QCA Devices 1.4/1.3 1.2/1.1 1.7/1.8 1.4/1.6 1.2/1.4 2.4/1.7 1.6/1.1 2.0/1.4 

 

ITRS Assessment of Some Current Ideas
for Successors to CMOS Transistors 

ITRS Assessment of Some Current Ideas
for Successors to CMOS Transistors 

No obvious candidates yet for a CMOS replacement !



SRC Research Gap Analysis (for <50nm)SRC Research Gap Analysis (for <50nm)

Worldwide Funding ~ $1,386 M

WW Research Gap ~ $1,155M

Industry Funding
(Semiconductors + 
Suppliers)

U.S. $313 M

Japan $142 M

Europe $ 74 M

~ $580 M

Asia-Pac $ 51 M

U.S. $329 M

Europe $249 M

Japan $125 M Government 
Funding

~ $806 M

Asia-Pacific  $103 M

Ongoing Tasks $2,169M

New Tasks $372M

Worldwide Needs ~ $2,541 M



Extending Moore’s Law via Integrating New Functions onto CMOS

ITRS Emerging Technologies ?

“Another
Dimension”



Why “Moore’s Law” Is Still a Fun Topic !Why “Moore’s Law” Is Still a Fun Topic !

 1977 1979 1981 1983 1985 
      
TECHNOLOGY: NMOS  CMOS  non-Si 
      
MATERIAL: Silicon GaAs 
      
LITHOGRAPHY: Optical E-Beam / X-Ray 
      
MIN. FEATURE: 4µm 3µm 2µm 1.5µm 1µm 
 

What makes us think that we can forecast more than
~5 years of future IC technology any better today ?!!

A 1975 IC Technology Roadmap




