Future Prospects for Moore's Law

Eighth Annual High Performance Embedded Computing Workshop

Lincoln Laboratory

September 28, 2004

Robert Doering

Texas Instruments, Inc.

Generalizations of Moore's Law

More functions* per chip

- Increased performance
- Reduced energy per operation
- Decreased cost per function (the principal driver)
- * transistors, bits, etc.

High-Level CMOS Technology Metrics — What are the Limits ?

- Component Diversity (integrated logic, memory, analog, RF, ...)
- Cost/Component (e.g., μ¢/gate or μ¢/bit in an IC)
- Component Density (e.g., gates/cm² or bits/cm²)
- Logic Gate Delay (time for a gate to switch logic states)
- Energy Efficiency (energy/switch and energy/time)
- Mfg. Cycle Time (determines time-to-market for new designs as well as rate of yield learning)

All of these are limited by multiple factors inter-linked into a complex "tradeoff space." We can only touch on a few of the issues today !

State-of-the-Art CMOS in 2004

(half-pitch of DRAM metal lines)

(high volume; chip area = 1 cm^2)

- ITRS Technology Node: 90 nm
- 4T-Gates/cm²: 37x10⁶ (150 million transistors/cm²)
- 6T-eSRAM bits/cm²: 10⁸ (600 million transistors/cm²)
- Cost/Gate (4T): 40 μ ¢ (high volume; chip area = 1 cm²)
- Cost/eSRAM bit: 10 μ¢
- **Gate Delay 24 ps *** (for 2-input, F.O. = 3 NAND)
- Switching Energy 0.5 fJ * (for inverter, half-cycle)
- **Passive Power** 6 nW * (per minimum-size transistor)
- Min. Mfg. Cycle Time 10 days (or 3 mask levels/day)
- * Values at extreme tradeoff for MPU application

Scaling -- Traditional Enabler of Moore's Law*

Can We Extend the Recent 0.7x/2-year Litho Scaling Trend ?

For lithography, it's a question of cost and control/parametric-yield !

A "Bag of Tricks" for Optical-Extension

Source: ASML

Of course : increasing complexity \rightarrow increasing cost !

~ 1 million units required to get within 10% of asymptotic cost ! (and getting worse with continued scaling)

Of course, overall scaling is limited by more than just lithography !

- Growing Significance of Non-Ideal Device-Scaling Effects:
 - ➢ I_{ON} vs. I_{OFF} tradeoff
 - \succ unfavorable ρ and L scaling for interconnects
- Approaching Limits of Materials Properties
 - Heat removal and temperature tolerance
 - ➤ C_{MAX} vs. leakage tradeoff for gate dielectric
 - ➤ C_{MIN} vs. mechanical-integrity tradeoff for inter-metal dielectric
- Increases in Manufacturing Complexity/Control Requirements
 - cost and yield of increasingly complex process flows
 - > metrology and control of L_{GATE} , T_{OX} , doping, etc.
- Affordability of R&D Costs
 - > development of more complex and "near cliff" technologies
 - design of more complex circuits with "less ideal" elements

ITRS Tries to Address Top-Down Goals

ITRS Highlights Scaling Barriers, e.g.:

Production Year:	2001	2004	2007	2010	2013	2016
Litho Half-Pitch [nm]:	130	90	65	45	32	22
Overlay Control [nm]:	45	32	23	18	13	9
Gate Length [nm]:	65	37	25	18	13	9
CD Control [nm]:	6.3	3.3*	2.2	1.6	1.2	0.8
T _{ox} (equivalent) [nm]:	1.3-1.6	1.2	0.9	0.7	0.6	0.5
Ι _{GATE} (L _{MIN}) [μΑ/μm]:	-	0.17	0.23	0.33	1	1.67
I _{ON} (NMOS) [μΑ/μm]:	900	1110	1510	1900	2050	2400
I _{OFF} (NMOS) [μΑ/μm]:	0.01	0.05	0.07	0.1	0.3	0.5
Interconnect K _{EFF} :	-	3.1-3.6	2.7-3.0	2.3-2.6	2.0-2.4	<2.0

Another Interconnect-Scaling Issue

Wire width < mean-free-path of electrons

Surface scattering becomes dominant

p=0 (diffuse scattering)
p=1 (specular scattering)

Metal Line Width (nm)

Can Some Hi-K Dielectric Replace SiON ?

Sub-nm SiON: • mobility

- uniformity
- leakage

Source: Intel

In general, continued transistor scaling requires new materials, processes, ...

... and, eventually new structures

At PQE 2004, Professor Mark Lundstrom expressed the outlook: "Sub-10nm MOSFETs will operate, but ...

- on-currents will be ~0.5xl_{ballistic}, off-currents high,
- 2D electrostatics will be hard to control,
- parasitic resistance will degrade performance,
- device to device variations will be large, and
- ultra-thin bodies and hyper-abrupt junctions will be essential"

ITRS Assessment of Some Current Ideas for Successors to CMOS Transistors

Logic Device Technologies	Performance	Architecture compatible	Stability and reliability	CMOS compatible	Operate temp	Energy efficiency	Sensitivity Afparameter)	Scalability
1D Structures	2.3/2.2	2.2/2.9	1.9/1.2	2.3/2.4	2.9/2.9	2.6/2.1	2.6/2.1	2.3/1.6
RSFQ Devices	2.7/3.0	1.9/2.7	2.2/2.8	1.6/2.2	1.1/2.7	1.6/2.3	1.9/2.8	1.0/2.1
Resonant Tunneling Devices	2.6/2.0	2.1/2.2	2.0/1.4	2.3/2.2	2.2/2.4	2.4/2.1	1.4/1.4	2.0/2.0
Molecular Devices	1.7/1.3	1.8/1.4	1.6/1.4	2.0/1.6	2.3/2.4	2.6/1.3	2.0/1.4	2.6/1.3
Spin Transistor	2.2/1.7	1.7/1.6	1.7/1.7	1.9/1.4	1.6/2.0	2.3/2.1	1.4/1.7	2.0/1.4
SETs	1.1/1.2	1.7/1.2	1.3/1.1	2.1/1.4	1.2/1.8	2.6/2.0	1.0/1.0	2.1/1.7
QCA Devices	1.4/1.3	1.2/1.1	1.7/1.8	1.4/1.6	1.2/1.4	2.4/1.7	1.6/1.1	2.0/1.4

No obvious candidates yet for a CMOS replacement !

SRC Research Gap Analysis (for <50nm)

What makes us think that we can forecast more than ~5 years of future IC technology any better today ?!!