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Abstract

Energy usage is becoming an increasingly important design constraint for all computer systems. This
issue is particularly critical in battery powered, embedded designs. Although many embedded processors
have developed sophisticated power management schemes, few have produced an accurate, easy-to-use energy
estimation framework. In this presentation we will describe the development of an instruction-level energy
modeling framework for the Analog Devices Blackfin family of processors. Using this model, we are able to
accurately estimate the energy consumed when running this code. While our main goal is to demonstrate
that we can perform accurate energy estimation, we also plan to develop a framework that is fully integrated
with compilation in order to produce more energy-efficient binaries. In this abstract we briefly describe our
methodology and show data that illustrate some of the difficulties encountered when attempting to statically
model energy.

1 Introduction and Methodology
The design specifications of many embedded systems include strict energy budgets. In order to reduce the time

to market (and still meet these constraints), a designer must be able to accurately predict the energy usage for
the system. The goal of our work is to develop an energy estimation scheme for the Analog Devices Blackfin 533
(ADSP-BF533). Two of the more common modeling options employed for energy estimation are architectural-
level and instruction-level estimation. Architectural-level tools, which include th Wattch [1] and SimplePower [2]
power modeling frameworks, compute energy based on functional unit usage considering transitions of individual
signals. Instruction-level tools calculate the energy budget by characterizing individual instructions and inter-
instruction energy usage. Instruction-level tools can only be used when the microarchitecture of the underlying
processor is simple (e.g., on embedded cores).
We have chosen to use instruction-level energy estimation for our work. This form of estimation was employed

previously by Tiwari et al. at Princeton to develop models for a number of embedded processors [3, 4]. They
developed accurate models for the Intel 486DX2 and the Fujitsu SPARClite. We are following a similar approach,
but extending it to consider further power aspects of the microarchitecture and applying these extension to the
ADSP-BF533.
As mentioned previously, an instruction-level estimation is constructed by characterizing the energy usage

of individual instructions (i.e., base energy cost) and then computing the overhead that is incurred when two
different instructions are executed consecutively (inter-instruction effects). The total energy for a program is
computed by summing the base energy costs of the individual instructions and the total inter-instruction effects.
To capture the base energy cost for an instruction, we place several instances of that instruction in a loop,

run the loop, and measure the average current produced. The base energy cost is directly proportional to
this measured current multiplied by the number of cycles required for the execution of one instance of the
instruction. Inter-instruction effects are those effects that cannot be captured in the base energy cost. Inter-
instruction effects can be characterized as effects related to resource constraints and delays (e.g., pipeline stalls,
cache misses, write buffer stalls, etc.) and circuit state overhead (the added cost of switching within the circuit
when executing two different instructions in succesion). The circuit state overhead can be measured by placing
many repetitions of a pair of instructions in a loop and measuring the average current. The inter-instruction
overhead can be calculated by computing the difference between the measured current and the average of the
two base costs of the instructions in the loop.



Instruction r7 = r3 + r4;
r3 Value r4 Value Current(mA)
0x1 0x1 52.20

0x80000000 0x8000000 52.31
0x90B 0x371F 52.82

0xCCCCCCCC 0xCCCCCCCC 53.27
0x33333333 0x33333333 53.33
0xFFFF 0xFFFF 53.44

0x7FFFFFFF 0x7FFFFFFF 54.34
0xFFFFFFFF 0xFFFFFFFF 54.34

Table 1: Impact of data operand values

Instruction Initial Values Current (mA)
r6 = -r3; r3 = 0x90B 51.98
r3 = -r3; r3 = 0x90B 60.53

Table 2: Impact of toggling register values

To estimate the total energy consumed by various programs, the base energy cost must be measure for each
instrucion in the instruction set and the circuit state overhead for a large number of instruction pairs needs to
be computed. The estimation framework will use a table lookup strategy to sum the base energy costs and the
inter-instruction effects of a program to estimate the energy usage. To reduce the amount of time to produce
this tables, we can identify similaries in energy costs of similar instructions.
The goal of his work is to produce an instruction-level energy model for the ADSP-BF533 and to use that

model as a base for an energy estimation framework. In addition to these goals, we are also trying to improve
the methods currently used for energy profiling. The remainder of this paper will discuss some of the issues
encountered during energy profiling and we will also provide an example result used to verify our approach.

2 Results
In this section we will show some examples of the measurements that need to be obtained to perform in-

struction level modeling. In addition collecting a large number of base energy cost measurements and circuit
state overheads, we also looked at the role that data values play in our ability to accurately collect this data.
In Table 1, we show the effects of using different data operand values for an add instruction. As we can see,
using different data values can have a significant impact on the average current and therefore the overall energy
consumed (4.0% in this example). One interesting observation is that since many values in a computer are typ-
ically close to zero, two-complement can be an inefficient representation when considering energy consumptions
(due to the large number of bit flips when a value changes sign).
In addition to investigating the impact of data operand values, we also looked the the impact output operands

and the cost of toggling destination register values. In this example, the input data values were kept constant,
but the destination register was varied. In Table 2 we show the results of a simple negate instruction. As we
can see, large changes in current occur for when the destination register value is toggled. We can see clearly
how dependent current measurements are on the number bit flips performed in a cycle.
As an example of the fidelity of our approach, we provide a small example program. We have both utilized our

profile data to produce an estimated energy budget for this snipit, as well as have measured the current drawn.
The code of the program is shown in Table 3. We have run the program on the ADSP-BF533 and measured
the average current during program execution. The energy estimation using our approach was computed to be
3.2 nJ, while the average energy on the BF533 was measured to be 3.3 nJ. This is only a 3% difference.
To date, our results have clearly demonstrated that we can utilize this approach and obtain accurate mea-

surements. In the presentation of this work, we will discuss some further power issues related to leakage energy
and temperature dependence. We will also discuss some of the difficulties of estimating energy in the memory
hierarchy.



r1 *= r2;
r2 = [i1++];

r0 = r0 + r1 (ns);
r1 = [p2++];

nop;

Table 3: Simple program to validate our approach
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