
Implementing Modal Software in Data Flow for Heterogeneous Architectures 
 

James Steed, Kerry Barnes, and William Lundgren  
Gedae, Inc.,  

Phone: 856-231-4458 
Email Address: {jim,kerry,bill}@gedae.com 

 

 
Software for embedded systems is often 
based on distinct processing modes.  A 
simple example of such modal behavior is a 
radar system that switches between search 
mode and tracking mode as targets are 
located.  In complex software systems, the 
system may have dozens of modes, including 
sub-modes, forming a deep hierarchy.  Such 
large embedded systems often must be 
implemented on boards of multiple digital 
signal processors (DSP).  Increasingly, field 
programmable gate arrays (FPGA) are being 
used alongside DSPs as a method for 
meeting the throughput and latency 
requirements of these systems.  Gedae is an 
integrated design environment for 
deployed systems and advanced 
demonstrators based on DSPs (e.g., AltiVec, 
PowerPC, TigerSHARC) or distributed 
networks (e.g., Linux clusters).  This paper 
describes extensions to Gedae’s language 
that empower developers to easily develop 
modal software and enable them to port that 
software to heterogeneous architectures, 
including a new class of boards that contain 
both DSPs and FPGAs.    

Modal Software 
Gedae’s language is based on data flow.  A 
flow graph implements an application, and 
each primitive node in the flow graph defines 
the data flow relationship between its inputs 
and outputs.  The three core types of data 
flow relationships are  

• Static: the number of tokens produced 
and consumed is constant and 
determined at application start-up. 

• Dynamic:  the number of tokens 
produced and consumed is 
determined at runtime, and the node 

cannot execute unless full input 
queues are ready to be processed and 
empty output queues are ready to be 
written to. 

• Nondeterministic:  the number of 
tokens produced and consumed is 
determined at runtime, and there are 
no restrictions on when the node can 
execute. 

While these basic types of data flow are 
sufficient to implement any application, 
complex modal applications would require 
large amounts of application control to be 
implemented in an ad hoc manner alongside 
the signal and data processing.  To reduce 
this overhead and provide a general solution 
to the problem of modal software 
development, the Gedae language has been 
extended to allow developers to mark 
segments of streams.  These user-specified 
markers on the beginning and end of stream 
segments can produce side effects that alter 
graph behavior, such as switching to tracking 
mode after a target has been found in a 
stream of radar data. 
 

 
Figure 1 – Two-mode radar implemented using 
segmentation 



Gedae’s primitive language is 
based on C with functional and 
variable-based extensions to 
allow the developer to interface 
with Gedae’s data structures.  
This C-code is grouped into 
methods, e.g., the Start 
method is executed at start-up, 
the Apply method is executed 
when the primitive has data to 
process, etc.  The example two-
mode radar application is shown 
in Figure 1.  Two subgraphs implement the 
two modes, Track and Search.  The 
segmenter primitive reads data from an 
I/O device (DataSource) and a graphical 
user interface (GUI) to create two branches 
of data and uses the segment() function to 
place the segment markers in the streams. 
As the markers are encountered in 
downstream primitives, the Reset and 
EndOfSegment methods are invoked, 
creating side effects and forming distinct 
boundaries between modes. 

Figure 2 – FIR filter implemented in Gedae-RTL using 16-bit
fixed-point arithmetic

Heterogeneity 
In embedded systems, FPGAs are often used 
alongside DSPs to implement front-end 
signal processing that must be processed at a 
high throughput.  With the increased focus 
on targets such as FPGAs, the Gedae block 
diagram language has been extended to 
enable porting to firmware.  Unlike the 
AltiVec, PowerPC, and TigerSHARC, these 
new targets generally do not allow cross-
compilation of C-code.  To support other 
languages, Gedae has been augmented with a 
single sample meta-language based on the 
theory of register transfer languages called 
Gedae-RTL.  This language is capable of 
exporting VHDL code for FPGAs as well as 
Ansi-C code optimized for a DSP.   
 
Functionality built using Gedae-RTL uses 
the new single sample primitive type.  
Conceptually, a graph of single sample 

primitives forms a processing pipeline that is 
enabled by a clock.  These single sample 
primitives are built upon seven fundamental 
functions:  register, assignment, decimate, 
clock, memory, memory read, and memory 
write.  The register function copies the input 
variable to the output with a delay of one 
clock pulse.  The assignment evaluates an 
expression and assigns its value to a variable.  
The memory function declares a memory 
buffer, and the memory read and write 
functions access a buffer. Decimate and 
clock functions set and retrieve the clocks 
tied to variables. 
 
Much like Gedae’s core language, the Gedae-
RTL graph specifies only the functionality of 
the graph without regard to the target or its 
programming language.  For example, Figure 
2 shows a FIR filter implemented in Gedae-
RTL, built from a register pipeline 
(ui16_history), multipliers 
(fx16_mult), and a tree-adder 
(ui16_treeadd) with no target-specific 
processing.  Through Gedae’s knowledge of 
the target processor, a graph such as this FIR 
filter is transformed to generate correct 
results on the target and for optimized 
performance on the target. Then target code 
is exported to implement the application.   
Components implemented in Gedae-RTL 
interact seamlessly with core Gedae 
components, allowing an entire 
heterogeneous system to be specified in the 
Gedae programming environment. 


	Modal Software
	Heterogeneity



