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Introduction1 
The concept of grid computing – back-room computational 
resources that are as accessible and available as the electric 
grid – has gained momentum [1]. Numerous Grid 
computing projects such as NetSolve [2] and Legion [3] 
have provided infrastructure to enable the launching and 
monitoring of mostly parameter sweep applications. These 
Grid computing projects demand that users endure a steep 
learning curve to program and use the system. Also, these 
systems draw a strong distinction between the users’ 
computers and the grid computing resources: users’ work is 
done on their computers, while grid jobs are executed on 
grid resources. A computational power grid should have 
characteristics similar to the electric power grids: always 
available, ubiquitous throughout the organization, and easy 
to use.  

The goal of the MIT Lincoln Laboratory Grid (LLgrid) 
project is to develop a On-Demand Grid Computing 
capability to address these characteristics and use 
MATLAB® – the dominant programming language for 
implementing numerical computations, widely used for 
algorithm development, simulation, data reduction, testing, 
and system evaluation – as its initial target application [4]. 
MIT Lincoln Laboratory has over one thousand MATLAB 
users; nearly two hundred users run very long jobs that 
could benefit from parallel processing. The LLgrid project 
has developed three technologies that allow these users to 
run parallel MATLAB jobs transparently on the LLgrid 
computational resources: 

• MatlabMPI for point-to-point messaging;  
• pMatlab for global array semantics (similar to High 

Performance Fortran); and  
• gridMatlab for integrating user’s computers into the 

LLgrid and automatically allocating grid computing 
resources. 

These technologies have combined to create a unique on-
demand, interactive Grid Computing experience, whereby 
running a parallel MATLAB job on LLgrid is identical to 
running MATLAB on the desktop.  Users can use LLgrid 
from Windows, Linux, Solaris, and Mac OS X computers 

with their desktop computer becoming a personal node in 
the LLgrid thereby establishing a transparent interface 
between the user’s computer and the grid resources. LLgrid 
is enabling faster algorithm development, prototyping, and 
validation cycles for Lincoln staff. In addition, the initial 
creation and setup of user accounts is entirely automated, 
which minimizes system administration.  
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The LLgrid System 
A number of components comprise the LLgrid On-Demand 
Grid Computing system, from the underlying hardware and 
network to MATLAB and the three Lincoln-developed 
MATLAB toolboxes: pMatlab, MatlabMPI, and 
gridMatlab. Figure 1 shows a conceptual depiction of the 
initial operational system including the LLgrid Alpha 
Cluster of Red Hat Linux nodes, the network configuration, 
the users’ computers on the central Lincoln local area 
network (LLAN), and the gridsan network storage, which 
delivers a common file system to the LLgrid cluster and all 
of the users.  

 
Figure 1: Conceptual diagram of LLgrid System. 

The core of the users’ experience with the LLgrid system 
occurs with MATLAB and the pMatlab toolbox, while the 
MatlabMPI toolbox provides the means for parallel 
MATLAB processes to communicate with each other and 
the gridMatlab toolbox provides the interface between 
MatlabMPI and the LLgrid resources for managing jobs. 
MatlabMPI [5] consists of a set of MATLAB scripts that 
implement a subset of MPI, allowing any MATLAB 
program to be run on a parallel computer. The key 
innovation of MatlabMPI is that it implements the widely 
used MPI “look and feel” on top of standard MATLAB file 
I/O, resulting in a “pure” MATLAB implementation that is 
exceedingly small (~300 lines of code). Thus, MatlabMPI 
will run on any combination of computers that MATLAB 
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supports. Overlayed on MatlabMPI, pMatlab combines 
operator overloading with parallel maps to provide implicit 
data parallelism and task parallelism [6]. pMatlab allows a 
MATLAB user to parallelize their program by changing a 
few lines.  

The gridMatlab toolbox transparently integrates the 
MATLAB on each user’s desktop with shared grid clusters 
through a cluster resource manager; when a MatlabMPI or 
pMatlab job is run by the user in his or her MATLAB 
session, gridMatlab automatically amasses the requested 
LLgrid computational resources from the shared grid 
resources to process in parallel with the user’s MATLAB 
session. (In traditional grid computing the users must 
submit their jobs to batch job queues where the jobs 
execution must wait to be executed.) Using MatlabMPI, the 
underlying common file system (hosted on gridsan) 
becomes the communication fabric through which each of 
the parallel MATLAB processes communicate, including 
the MATLAB on each user’s desk. By integrating the user’s 
MATLAB session into the set of grid cluster MATLAB 
sessions working on his or her code, the user receives 
immediate feedback on the status of his or her job, thereby 
making parallel MATLAB execution virtually identical to 
running MATLAB on a single computer.  

Results 
As with any distributed, parallel computing system, it is 
expected to deliver high performance; the LLgrid system 
meets those expectations. For example, for a hyper-spectral 
imaging (HSI) analysis application [7], LLgrid is used to 
classify various characteristics in HSI signal returns using a 
normal compositional model (NCM). The application is 
composed of three components: abundance estimates of 
class at each pixel (up_abund), NCM class parameter 
updates (up_NCM), and NCM log-likelihood computations 
for given class abundance values (up_mll). Figure 2 shows 
the speedup of these three application components, each 
realizing near linear speedup.  

 
Figure 2: Speedup realized by Hyperspectral Analysis 

application 

When it comes to modeling productivity, we turned to the 
Darpa IPTO High Productivity Computing Systems (HPCS) 
program. One of the challenges in the HPCS mission is 
defining, modeling, and measuring the productivity that a 
computer system delivers to its users and consequently to 
the users’ organization. To answer this challenge, the HPCS 

Productivity Team has developed a high performance 
productivity framework and evaluation model [8]. Their 
model implies a profoundly different way of viewing HPC 
systems by including the user-associated costs in the model 
and by viewing innovative hardware as a key aspect to 
lowering the very high cost of high performance computing 
software. 

1

1.5

2

2.5

3

3.5

4

4.5

5

ATR Laser Coeff Leak HIS GMTI BMD Herc Ladar

Sample Applications (sorted by ROI)

2 SLOCs/hr 4 SLOCs/hr  
Figure 3: Range of Return of Investment for sample LLgrid 

applications. 

Using the HPCS productivity model, Figure 3 plots two 
return on investment (ROI) values for the LLgrid system 
and nine sample applications that are currently being run on 
the LLgrid system, it shows a potential upper and lower 
bounds by calculating the ROI for average programming 
rates of 2 and 4 SLOCs per hour. The graph shows that the 
ROI range is between 2.6 and 4.6 across the nine sample 
applications and average programming rates, which means 
that for every $1.00 spent on the LLgrid, between $2.60 and 
$4.60 is returned in user time saved. 
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