
LLgrid: Enabling On-Demand Grid Computing With
gridMatlab and pMatlab

Albert Reuther, Tim Currie, Jeremy Kepner, Hahn G. Kim,
Andrew McCabe, Michael P. Moore, and Nadya Travinin

MIT Lincoln Laboratory, Lexington, MA 02420
Phone: 781-981-5699

Email Addresses: {reuther, currie, kepner, hgk, amccabe, moore, nt}@ll.mit.edu

May 28, 2004

Introduction1
The concept of grid computing – back-room computational
resources that are as accessible and available as the electric
grid – has gained momentum [1]. Numerous Grid
computing projects such as NetSolve [2] and Legion [3]
have provided infrastructure to enable the launching and
monitoring of mostly parameter sweep applications. These
Grid computing projects demand that users endure a steep
learning curve to program and use the system. Also, these
systems draw a strong distinction between the users’
computers and the grid computing resources: users’ work is
done on their computers, while grid jobs are executed on
grid resources. A computational power grid should have
characteristics similar to the electric power grids: always
available, ubiquitous throughout the organization, and easy
to use.

The goal of the MIT Lincoln Laboratory Grid (LLgrid)
project is to develop a On-Demand Grid Computing
capability to address these characteristics and use
MATLAB® – the dominant programming language for
implementing numerical computations, widely used for
algorithm development, simulation, data reduction, testing,
and system evaluation – as its initial target application [4].
MIT Lincoln Laboratory has over one thousand MATLAB
users; nearly two hundred users run very long jobs that
could benefit from parallel processing. The LLgrid project
has developed three technologies that allow these users to
run parallel MATLAB jobs transparently on the LLgrid
computational resources:

• MatlabMPI for point-to-point messaging;
• pMatlab for global array semantics (similar to High

Performance Fortran); and
• gridMatlab for integrating user’s computers into the

LLgrid and automatically allocating grid computing
resources.

These technologies have combined to create a unique on-
demand, interactive Grid Computing experience, whereby
running a parallel MATLAB job on LLgrid is identical to
running MATLAB on the desktop. Users can use LLgrid
from Windows, Linux, Solaris, and Mac OS X computers

with their desktop computer becoming a personal node in
the LLgrid thereby establishing a transparent interface
between the user’s computer and the grid resources. LLgrid
is enabling faster algorithm development, prototyping, and
validation cycles for Lincoln staff. In addition, the initial
creation and setup of user accounts is entirely automated,
which minimizes system administration.

This work is sponsored by the United States Air Force under Air Force
contract F19628-00-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed
by the United States Government.

The LLgrid System
A number of components comprise the LLgrid On-Demand
Grid Computing system, from the underlying hardware and
network to MATLAB and the three Lincoln-developed
MATLAB toolboxes: pMatlab, MatlabMPI, and
gridMatlab. Figure 1 shows a conceptual depiction of the
initial operational system including the LLgrid Alpha
Cluster of Red Hat Linux nodes, the network configuration,
the users’ computers on the central Lincoln local area
network (LLAN), and the gridsan network storage, which
delivers a common file system to the LLgrid cluster and all
of the users.

Figure 1: Conceptual diagram of LLgrid System.

The core of the users’ experience with the LLgrid system
occurs with MATLAB and the pMatlab toolbox, while the
MatlabMPI toolbox provides the means for parallel
MATLAB processes to communicate with each other and
the gridMatlab toolbox provides the interface between
MatlabMPI and the LLgrid resources for managing jobs.
MatlabMPI [5] consists of a set of MATLAB scripts that
implement a subset of MPI, allowing any MATLAB
program to be run on a parallel computer. The key
innovation of MatlabMPI is that it implements the widely
used MPI “look and feel” on top of standard MATLAB file
I/O, resulting in a “pure” MATLAB implementation that is
exceedingly small (~300 lines of code). Thus, MatlabMPI
will run on any combination of computers that MATLAB

mailto:nt}@ll.mit.edu

supports. Overlayed on MatlabMPI, pMatlab combines
operator overloading with parallel maps to provide implicit
data parallelism and task parallelism [6]. pMatlab allows a
MATLAB user to parallelize their program by changing a
few lines.

The gridMatlab toolbox transparently integrates the
MATLAB on each user’s desktop with shared grid clusters
through a cluster resource manager; when a MatlabMPI or
pMatlab job is run by the user in his or her MATLAB
session, gridMatlab automatically amasses the requested
LLgrid computational resources from the shared grid
resources to process in parallel with the user’s MATLAB
session. (In traditional grid computing the users must
submit their jobs to batch job queues where the jobs
execution must wait to be executed.) Using MatlabMPI, the
underlying common file system (hosted on gridsan)
becomes the communication fabric through which each of
the parallel MATLAB processes communicate, including
the MATLAB on each user’s desk. By integrating the user’s
MATLAB session into the set of grid cluster MATLAB
sessions working on his or her code, the user receives
immediate feedback on the status of his or her job, thereby
making parallel MATLAB execution virtually identical to
running MATLAB on a single computer.

Results
As with any distributed, parallel computing system, it is
expected to deliver high performance; the LLgrid system
meets those expectations. For example, for a hyper-spectral
imaging (HSI) analysis application [7], LLgrid is used to
classify various characteristics in HSI signal returns using a
normal compositional model (NCM). The application is
composed of three components: abundance estimates of
class at each pixel (up_abund), NCM class parameter
updates (up_NCM), and NCM log-likelihood computations
for given class abundance values (up_mll). Figure 2 shows
the speedup of these three application components, each
realizing near linear speedup.

Figure 2: Speedup realized by Hyperspectral Analysis

application

When it comes to modeling productivity, we turned to the
Darpa IPTO High Productivity Computing Systems (HPCS)
program. One of the challenges in the HPCS mission is
defining, modeling, and measuring the productivity that a
computer system delivers to its users and consequently to
the users’ organization. To answer this challenge, the HPCS

Productivity Team has developed a high performance
productivity framework and evaluation model [8]. Their
model implies a profoundly different way of viewing HPC
systems by including the user-associated costs in the model
and by viewing innovative hardware as a key aspect to
lowering the very high cost of high performance computing
software.

1

1.5

2

2.5

3

3.5

4

4.5

5

ATR Laser Coeff Leak HIS GMTI BMD Herc Ladar

Sample Applications (sorted by ROI)

2 SLOCs/hr 4 SLOCs/hr
Figure 3: Range of Return of Investment for sample LLgrid

applications.

Using the HPCS productivity model, Figure 3 plots two
return on investment (ROI) values for the LLgrid system
and nine sample applications that are currently being run on
the LLgrid system, it shows a potential upper and lower
bounds by calculating the ROI for average programming
rates of 2 and 4 SLOCs per hour. The graph shows that the
ROI range is between 2.6 and 4.6 across the nine sample
applications and average programming rates, which means
that for every $1.00 spent on the LLgrid, between $2.60 and
$4.60 is returned in user time saved.

References
[1] I. Foster and C. Kesselman, The Grid: Blueprint for a New

Computing Infrastructure, Second Edition, Morgan-
Kaufman, 2004.

[2] S. Agrawal, J. Dongarra, K. Seymour, and S. Vadhiyar, Grid
Computing – Making the Global Infrastructure a Reality, F.
Berman, G. Fox, and T. Hey (eds.), John Wiley & Sons, Ltd.,
2002.

[3] A. S. Grimshaw and W. A. Wulf, “The Legion vision of a
worldwide virtual computer,” Communications of the ACM,
Vol. 40, No. 1, Jan. 1997.

[4] MATLAB, The MathWorks, Inc.,
http://www.MathWorks.com/products/matlab/.

[5] J. Kepner, “Parallel programming with MatlabMPI,” High
Performance Embedded Computing (HPEC) Workship 2001,
http://www.ll.mit.edu/hpec/, 2001.

[6] J. Kepner and N. Travinin, “Parallel MATLAB: The next
generation,” High Performance Embedded Computing
(HPEC) Workship 2003, http://www.ll.mit.edu/hpec/, 2003.

[7] D. Stein, “A parallel implementation of the normal
compositional model for hyperspectral analysis based on
MatlabMPI,” High Performance Embedded Computing
(HPEC) Workship 2001, http://www.ll.mit.edu/hpec/, 2001.

[8] J. Kepner, “HPC productivity model synthesis,” accepted for
publication in the International Journal of High Performance
Computing Applications, Vol. 18, No. 4, November 2004.

