
Optimizing the Fast Fourier Transform over memory hierarchies for embedded digital

systems: a fully in-cache algorithm

James E. Raynolds
College of Nanoscale Science and Engineering, University at Albany,

State University of New York, Albany, NY 12203

Lenore R. Mullin
Computer Science Department, University at Albany,
State University of New York, Albany, NY 12203

(Dated: May 28, 2004)

We present an algorithm for the Fast Fourier Transform (FFT) which maximizes the use of in-
cache operations. Through repeated transpose and reshape operations, all computations can be
carried out in cache for the situation in which the array size n is a power of two times the cache size
c (also assumed to be a power of two). A formula for the number of transpose/reshape operations
is given in terms of c and n. The example: n = 32, c = 4 is worked out in detail to demonstrate the
general principles.

Our approach to maximizing in-cache operations is
similar to the approach one might take in partitioning the
data for a parallel implementation [1]. That is, the data is
divided into blocks that fit into cache and as many cycles
of the FFT are performed which can be accommodated
in cache. Through a series of operations in which the
data is transposed and then reshaped (composing indices
prior to materialization of the transpose, better known
as the corner turn [2]), we obtain an algorithm in which
all operations are performed in cache. It is important to
note that we want to materialize the array after it has
been transposed and reshaped so that components have
locality. The most difficult aspect of this optimization is
determining when to materialize and when not to mate-
rialize. These are issues of cost functional analysis. That
is to say, if the input vector fits in cache we’d compose
the indices (i.e. we don’t materialize the transpose). Ma-
terialization becomes even more important when cache
misses propagate to include page faults. In this report
we restrict our attention to the case in which the size of
the array n is a power of 2 times the cache size c which, in
turn is also a power of two. That is, we assume n = 2p

∗c
for some integer p, and c = 2q for some integer q.

To illustrate the procedure, in the following example
we choose the cache size, c = 4, and the input length,
n = 32. We generate the vector of indices using the iota

operator: ι (n):

~v ≡ ι (n) =< 0 1 2 · · · 31 > . (1)

To conceptualize movement through the cache we ab-
stract the indices as a two-dimensional matrix with rows
of length equal to the cache size. The number of rows is
then given by r = n/c = 8. Explicitly, we use the reshape

operator ρ̂ to define the matrix A (assuming row-major
ordering) to be:

A ≡< r c > ρ̂~v =

























0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

























. (2)

We say that the array A has shape < r c >, that is,
A is an r × c matrix. This is more succinctly expressed
using the shape operator ρ (not to be confused with the
reshape operator ρ̂) by the expression ρA =< r c >.
Two cycles of the FFT are next carried out on each of
the rows. That is, log2(c) operations can be performed
before a reorganization is needed. It is also important
to note that based on the associativity of the cache, i.e.
b-way versus direct, that using a radix b FFT versus
radix 2 may be more appropriate [3]. That is, we require
2p = (2m)l where p = m + l. For example, 26 = 64 =
(23)2 = 82 = (22)3 = 43. Hence, for a vector length 64,
radix 2 may be substituted by radix b = 4, 8, or 64.

The well-known access patterns for the first log2(c) op-
erations (i.e. 2 cycles of the FFT for this example) are
indicated schematically in Fig. 1 where the vertical bars
indicate the cache boundaries.

0 1 2 3 4 5 6 7 8 9 10 11 etc.

FIG. 1: Schematic illustration of some of the access patterns
for first two cycles of the FFT (some patterns omitted for
clarity).



2

To proceed further would require cache misses involv-
ing communication between rows. Therefore we trans-
pose the array to give:

AT =









0 4 8 12 16 20 24 28
1 5 9 13 17 21 25 29
2 6 10 14 18 22 26 30
3 7 11 15 19 23 27 31









. (3)

Now each row is of length 2∗c and we want to redistribute
the data by reshaping the array so that it once again has
rows of length equal to the cache size. We write:

B ≡< r c > ρ̂ (AT ) =

























0 4 8 12
16 20 24 28
1 5 9 13
17 21 25 29
2 6 10 14
18 22 26 30
3 7 11 15
19 23 27 31

























, (4)

The reshape operator ρ̂ is used to once again produce
the matrix B whose rows are each of length equal to the
cache size.

At this point, two more cycles of the FFT are carried
out on each of the rows as illustrated in Fig. 2.

0 4 8 12 16 20 24 28 1 5 9 13 etc.

FIG. 2: Schematic illustration of some of the access patterns
for next two cycles of the FFT after the transpose/reshape
(some patterns omitted for clarity).

Again to proceed further would require cache misses
so we transpose the array once again:

BT =









0 16 1 17 2 18 3 19
4 20 5 21 6 22 7 23
8 24 9 25 10 26 11 27
12 28 13 29 14 30 15 31









, (5)

and as before we reshape this to give rows of length equal
to the cache size:

C ≡< r c > ρ̂ (BT ) =

























0 16 1 17
2 18 3 19
4 20 5 21
6 22 7 23
8 24 9 25
10 26 11 27
12 28 13 29
14 30 15 31

























. (6)

At this point the next and final cycle of the FFT is done.
There is no need to transform the matrix back (actu-
ally moving the data) to yield the final form of the FFT
because the composite index mapping from C to A is
known.

This is an important point: the transformation from
A to B and from B to C are operations in which data
is actually moved. Thus in this example there are three
materializations: A, B and C. In general for n = 2p

∗ c
(with c = 2q), the number of materializations will be
given by computing the fraction:

f =
log2(n)

log2(c)
. (7)

If f is not an integer we round to the next higher integer.
In the above example we have f = log2(32)/log2(4) =
5/2 = 2.5. Now rounding up to the next integer gives
f → 3, corresponding to the three materializations: A,
B, and C required to complete the transform in cache.

Notice that we have been discussing a situation in
which n/c > c. The case in which n/c = c yields a
square matrix A which need only be transposed once
(without reshaping) to yield two materializations: A and
AT . For the case in which n/c < c there are still only
two materializations but now we must reshape after the
transpose. Again we emphasize that the operation of
transpose/reshape is composed to yield only one materi-
alization.

Cache optimizations are traditionally done by compil-
ers and are referred to as tiling operations [4, 5]. When
access patterns are contiguous a single tiling is often ade-
quate. However, for the FFT multiple tilings for a single
cache level are required as illustrated above. It is also
possible to obtain optimizations by blocking application
code [6]. In this case compiler optimizations would be
turned off [7]. Again, blocking usually occurs only once,
not multiple times, for each cache level. Our research
shows that, by using an algebraic specification of the
problem and its mappings, we can describe how to deter-
ministically build processor/memory hierarchy optimiza-
tions. Our methods will enable application programmers,
who know the algorithm and target architectures, to de-
sign and build optimal, scalable, reconfigurable scientific
software [8, 9]. We plan to introduce these mechaniz-

able transformations into scientific libraries. The ideas



3

presented in this paper will be extended and a presen-
tation of the algorithm in its complete generality will be
presented in a forthcoming publication.

[1] H.Hunt, L. Mullin, and D. Rosenkrantz, in Proceedings of
the International Conference on Parallel and Distributed
Processing Techniques and Applications(PDPTA’99) (Las
Vegas, NV, 1999), pp. 1641–1647.

[2] L. M. R. Mullin, A Mathematics of Arrays, Ph.D. Thesis,
Syracuse University, December 1988.

[3] L. Mullin and S. Small, Journal of Mathematical Modeling
and Algorithms 1, 193 (2002).

[4] K. S. Gatlin and L. Carter, in Proceedings of the 2000
International Conference on Parallel Architectures and
Compilation Techniques (PACT ’00) (IEEE Computer So-
ciety Press, Philadelphia, PA, 2000), pp. 249–260.

[5] L. Carter, J. Ferrante, and S. Hummel, in International
Parallel Processing Symposium (9th IPPS’95) (IEEE
Computer Society Press, 1995).

[6] D. Takahashi, Lecture Notes in Computer Science 2110,
551 (2001), ISSN 0302-9743.

[7] K. D. Cooper and L. Torczon, Engineering a compiler (El-
sevier, 2003), pp. 386–391.

[8] L. Mullin, Digital Signal Processing (to appear).
[9] L. Mullin, E. Rutledge, and R. Bond, in Proceedings of the

High Performance Embedded Computing Workshop HPEC
2002 (MIT Lincoln Laboratory, Lexington, MA, 2002).




