Dynamo: A Runtime Codesign Environment

Heather Quinn', Miriam Leeser L. A. Smith King

Dept of Electrical and Computer Engineering Dept. of Mathematics and Computer Science
Northeastern University College of the Holy Cross

Boston, MA 02115 Worcester, MA 01610

{hquinn, mel}@ece.neu.edu LA@Qcs.holycross.edu

Systems using Field Programmable Gate Array (FPGA) boards have been proven effective for gaining
one to three orders of magnitudes speedup over systems based solely on PCs. Signal and image processing
applications are especially attractive for implementation on FPGAs as their computationally intensive and
massively parallel algorithms can effectively take advantage of the FPGA architecture. In moving part of
an algorithm to hardware, one must consider overhead costs as well as the improvement in the computation
to determine whether the move will result in overall system speedup. Dynamo is a runtime system for
generating hardware/software pipeline implementations. Dynamo balances the benefits of hardware and
software implementations and takes overhead costs into account in order to accurately predict runtimes of
hardware/software systems.

Currently, the Dynamo system generates hardware/software solutions for image processing applications
from a library of predefined component implementations. Many image processing applicationsconsist of a
series of algorithms applied to the image, forming a computation pipeline. When using Dynamo, an image
analyst only needs to specify the pipeline of image processing components to apply and an image or images
to process. Image processing components are chosen from a library of predefined components: the image
processing Basic Library of Components (ipBLOC). Each component in the library has at least one software
and one hardware implementation associated with it. From the pipeline specification, Dynamo selects the
most efficient combination of of hardware or software component implementations to minimize pipeline
runtime (pipeline assignment), generates the source code for a HW/SW implementation of the pipeline
(pipeline compilation), processes the input image(s) using the generated pipeline (pipeline execution), and
returns the result to the analyst.

I rage Pi pel i ne
Si ze Sel ecti on

Pipeline Assignment i pBLOC

et : I pl s
- - i pBLOC
Pi pel i ne Profil es

Assi gnnment
Sol uti on

Conponent
Specs

Pipeline Compilation
LRES I nierface
Type Specs

Java Pi pel i ne
Execut abl e I nt erf ace
Pi pel i ne Speci fi cati on

Pipeline Execution

I mage -

Resul t

Figure 1: System Overview

The goals of the Dynamo system are to allow an image analyst to focus solely on pipeline selection,
create image processing pipelines at runtime, make efficient use of software and FPGA hardware, and build
pipelines that maximize performance. Currently, Dynamo is restricted to image processing applications, but
is easily extensible to other application domains. Dynamo’s design includes three major subsystems which
implement pipeline assignment, pipeline compilation and pipeline execution, respectively. These subsystems

IHeather Quinn is supported under a Graduate Student Researchers Program Fellowship through NASA’s Goddard Space
Flight Center.



interact with Dynamo’s predefined libraries, including the ipBLOC. Figure 1 shows an overview of the
Dynamo system.

At the core of the Dynamo runtime system is pipeline assignment (PA). PA assigns hardware or software
implementations to each component in the pipeline to minimize total pipeline execution time, while meeting
the area requirements for the FPGA device. There are costs associated with passing intermediate images
and data between components that differ depending on component types and interfaces. These costs include
data movement, communication, reprogramming and hardware initialization. PA must balance the latency
and area costs to find the best solution for a given FPGA device. Profiles of the component implementations
and of overhead runtimes allow PA to accurately predict pipeline solution runtimes. The pipeline assignment
problem is NP-complete, and is similar to the hardware/software codesign partitioning problem.

The Dynamo subsystem responsible for solving PA is named SHARPP (Software/HArdware Runtime
Procedural Partitioning). SHARPP solves the pipeline assignment problem quickly at runtime and uses
different algorithms for different pipeline sizes to keep execution time short. SHARPP uses dynamic pro-
gramming for small pipelines (1-7 components) and two variations of tabu search to solve large pipelines
(7-20 components). Tabu search is a metahueristic based on local search which provides near-optimal PA
solutions. The two variations find solutions that are on average 18% slower than the optimal pipeline latency.

Pipeline compilation and execution occur within the runtime environment. Dynamo’s RIPS (Runtime
Interfacing for Pipeline Synthesis) subsystem performs pipeline compilation. RIPS uses the SHARPP output
to compose an executable that calls the appropriate implementations and overhead methods that comprise
a pipeline solution. The pipelines are constructed at runtime because pre-constructing PA solutions for
all possible combinations of component implementations is not practical. Finally, the pipeline is executed.
Dynamo’s execution system runs the compiled pipeline on the selected image and outputs the results.

As an illustration of how Dynamo works, assume the image analyst has chosen to run the pipeline “median
filter — histogram” on a 40185-pixel image. Table 2 shows the four possible solutions to this pipeline and
the SHARPP predicted latencies. The component assignments are shown within parentheses with “:sw”
indicating software and “:hw” indicating hardware. These results show that the optimal solution for this
image size uses the hardware implementations for both components. Figure 2 shows what the pipeline looks
like when the overhead costs are included in the pipeline, where the squares represent the components and
the circles represent the overhead methods. RIPS was used to build executable solutions for each of the four
pipelines. These pipelines were executed and measured so the actual execution times could be compared
with SHARPP’s estimates. The relative error for the predicted latency is quite low.

We have tested pipelines that range in size from one to 20 components. Many short pipelines are com-
pletely assigned to software since the hardware initialization cost is relatively high. As pipelines included
more components, enough speedup will be gained by processing in hardware to mitigate the device initial-
ization cost. Therefore, longer pipelines tend to be mainly assigned to hardware, except when either the
image is small or the component is not well matched to the FPGA architecture.

Iadian @. :
D e SO = )

Figure 2: Pipeline Solution with Overhead Methods

Annotated Solution Predicted Actual Relative
Runtime Runtime Error
(ms) (ms)

(mf:sw) — (histogram:sw) 3766 3801 0.009

(mf:sw) — (histogram:hw) 6076 5844 -0.038

(mf:hw) — (histogram:sw) 2772 2836 0.023

(mf:hw) — (histogram:hw) 2718 2260 -0.169

Table 2: The Four Solutions to median filter — histogram





