
Discrete Fourier Transform IP Generator∗

Grace Nordin James C. Hoe Markus Püeschel
Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA

Abstract

Intellectual Property (IP) libraries are commonly used by hardware designers to increase produc-
tivity and reduce the time-to-market. These static IP libraries do not allow the designers flexibility in
customizing trade-offs. We propose a parameterized DSP IP generator that allows designers to specify
the cost/performance tradeoff. We present a prototype implementation of a parameterized DFT generator
and compare our generated DFT with Xilinx Logicore’s DFT IP Core. Our results show that we generate
high-quality DFT blocks that match the performance and cost of Xilinx LogiCore DFT implementations.
More importantly, we show that our parameterized design generation yields customized DFT blocks over
a range of different performance/cost tradeoff points.

Introduction. We propose a parameterized IP generator as an alternative to static IP blocks. The genera-
tor is tailored for application-specific tradeoffs, such as area, performance, numerical accuracy and power
consumption. Our approach preserves the advantage of using static IP blocks, while allowing the design-
ers more control over the design. This generator can be used together with a search engine to find the
best possible implementation for a given set of constraints. Here we present our experience in developing
a parameterized generator for discrete Fourier transform (DFT). A full description of this work has been
submitted to a conference.
Generation of Discrete Fourier Transform. Our DFT generator is based on the Pease algorithm for the
DFT, which we express in a formula notation as

F2n = {
n−1
∏

i=0

L2n

2 (I2n−1 ⊗F2) Tn−i}R2n , F2 =
(

1 1
1 −1

)

(1)

where ‘I’ denotes an identity matrix, ‘⊗’ the Kronecker product of matrices, ’T’ denotes the Twiddle factors,
‘R’ denotes the bit reversal, and ‘L’ a stride permutation. Figure 1 shows a dataflow representation of (1)
for n = 3. This formula-derived dataflow graph can be directly mapped to a combinational circuit where the
implementation cost is approximately n log(n)/2 C blocks, plus the routing cost of realizing the Ln

2 wire
permutations. The cost of a combinational implementation is usually very large and unrealistic to implement
for large n. A common practical DFT implementation requires a sequential implementation where the logic
resources, e.g., C, are reused multiple times by horizontal folding or vertical folding. Figure 1 shows, for
n = 3, block diagrams of a horizontally folded DFT (middle) and a horizontally and vertically folded DFT
(right).

Our DFT generator accepts as input parameters the DFT size, the data format (i.e., fixed-point number
range and precision), and a design parameter p that controls the degree of parallelism in the generated imple-
mentation. This freedom allows the designer to select a custom tradeoff between minimizing cost (i.e., area
and power) and maximizing performance (i.e., latency and throughput). Our DFT generator can also accept
target-specific parameters to reflect the designer’s preference for different classes of resources. A parameter
that our DFT generator allows is a relative value for a Block Select-RAM (BRAM, a specialized memory

∗This work was supported by NSF through award ITR/NGS-0325687

1

C block

8

8

8

8 8 8

2
8L2

2 22 v−fold()

R8 T1(I4 ⊗ F2)L8

2

input
bypass

T (I4 ⊗ F2) L
8

2
register

Figure 1: Pease DFT algorithm. From left to right: completely flattened, horizontally folded, fully horizon-
tally and vertically folded.

���������
	������� � ������ ��	����������

�

 !�!�!�

" �!�!�

#!�!�!�

$!�!�!�

% �!�!�!�

% !�!�!�

% " $ % # &!
'

()* +
,- .

/�0�1�2�3�4�5�6�798
:<;�=>6 5�4�?�@�A�B�C

D

E

F D

F E

G D

GHE

I D

F G J K F L IHG
M

NO
PQ
R

S�T�UHV�W
X�T�Y
W�Z�V�[�\�]�S�^�_

`
a `!`!`
b `!`!`
c `!`!`
d `!`!`
e `!`!`
fH`!`!`
g `!`!`

a b d h a fic!b
j

kl m
n o
pl q
or
st
uv
wx
y

z!{ |�} ~ � z
z!{ |�� � { � �
� { � { | �

Figure 2: Synthesis results for F64: slice utilization, BRAM utilization, and transform throughput (trans-
form/second, overlapping loading and unloading).

Table 1: Parameters for DFT IP Generator and the corresponding effects on logic slices, BRAM and through-
put as each parameter increases

Parameter Logic Slices BRAM Throughput
n (transform size) ⇑ ⇑ ⇓

p (parallelism) ⇑ ⇑ ⇑

fixed-point number range and precision ⇑ ⇑ −

relative value of BRAM cost ⇓ ⇑ −

primitive) in terms of slices (generic logic building blocks). The DFT generator takes this preference into
account to balance resource minimization across BRAM and logic slice utilization. Table 1 lists some cur-
rent parameters that our DFT generator currently supports, and the corresponding effects on BRAM, logic
slice utilization and throughput. The output of our generator is an RTL-level Verilog description of the
desired DFT implementation.
Sample Result. For n = 6, our DFT generator produces 6 implementations representing different trade-
offs between the different design goals and constraints. Figure 2 shows the resource utilization, in terms of
slices and BRAM, and throughput over these 6 design choices, compared against the latest Xilinx LogiCore
DFT implementations. The generated DFT implementations are synthesized for the Xilinx Virtex2-Pro
XC2VP100-6FF1696 FPGA using Xilinx ISE version 6.1.03i. To show the effects of our Xilinx Virtex2-
Pro-specific parameters, each graph reports two separate results corresponding to the extreme tradeoff points
of slices and BRAM utilization. They are 1) minimize the use of slices; and 2) minimize the use of BRAMs.
As the graphs show, our minimum resource design points (i.e., p = 1 or p = 2) occupy a similar tradeoff
space as the Xilinx LogiCore DFT implementations. By varying p and the relative value of BRAM, the
designer can customize the tradeoff function between performance, slice, and BRAM usage. For larger p
values, our generated DFT implementations can offer a higher throughput at the cost of an increased resource
requirements.

2

