
Gedae: Auto Coding to a Virtual Machine

William I. Lundgren, Kerry B. Barnes, and James W. Steed
Gedae, Inc.

Phone: 856-231-4458
Email Addresses: {bill.lundgren, kerry.barnes, jim}@gedae.com

Gedae is an integrated application development
environment. It has been under development
since 1987 – though the concepts involved are
rooted in much earlier work done in the areas of
data flow and hardware simulation. In Gedae
we have developed a language for describing an
architecture-independent functional
specification, a virtual machine on which the
application runs, and transformations that create
an efficient implementation of the application
that runs on the virtual machine. In this paper we
discuss three topics – the language, the virtual
machine and the transformations.

The language was developed with two
requirements – any functionality must be easily
expressible, and the language must be
transformable into an efficient implementation
on the virtual machine. The Gedae Language
consists of both the Gedae Primitive Language
and the Gedae Graph Language. Much of the
expressiveness is in the primitive description
language. The language has over 50 expression
features to define the behavior of functional
ports. Port data flow requirements can be
specified either prior to runtime (static) or at
runtime (dynamic). Ports can add segment
boundary markers on the data flow streams,
thereby breaking the stream into independent
data sets. Exclusive families of ports can send
data down one branch or another to implement
mode changes while maintaining coherent state
vectors used by all the modes. Primitives can
maintain their own local state variables and
provide methods for execution, startup,
termination and handling the beginning and
ending of segment processing. The Gedae
Graph Language allows the hierarchical
development of graphs consisting of primitives,
parameters and other Gedae graphs. The graph
language can describe families of these entities
to allow parameterized expression of
parallelism. The resulting language permits

Implementation
Specification

100+ Transformations

Runtime Kernel

Vi
rtu

al

M
ac

hi
ne

Vendor Components

Multiprocessor Hardware

The Structure of Gedae

Functional
Specification

Application Implementation

User

Vendor

Gedae

G
ed

ae

direct expression of signal and data processing
algorithms, distribution for providing load
balancing and fault tolerance, and application (or
software, or mode) control.

To achieve efficiency, the language and virtual
machine were codesigned. The virtual machine
contains a runtime kernel that executes
components generated by the transformations.
For example, the static scheduler executes
predetermined execution sequences based on
static data flow ports, and the dynamic scheduler
executes groups of static schedules that interface
through dynamic data flow ports. The virtual
machine manages the segment processing and
controls the efficient and timely transfer of
distributed state vectors between processors.
The virtual machine also allows for vendor
specific optimizations of processing, such as,
setting data transfer parameters. A thin layer

mailto:jim}@gedae.com

over the vendor-provide vector processing
libraries allows primitives to execute efficiently.

One of the unique features of Gedae is the
visibility of the implementation and the
execution it provides. This visibility is possible
because the language, the transformations and
the virtual machine are all part of Gedae. The
visibility allows the generation of detailed
execution timelines and the symbolic viewing of
any memory in the system. Primitive execution,
queue state and data transfers between
processors can be dynamically viewed when the
application is running.

 The transformations are the central part of
Gedae and make possible the efficient execution
of the application expressed in the Gedae
Language on the Gedae Virtual Machine. The
transformations are fully automated but can be
guided by user supplied implementation
parameters to control distribution, strip mining,
data transfers, scheduling priorities (both static
and dynamic), queue policies and memory
management. Some of the transformations
directly modify the graph into an equivalent
graph to implement a user entered
implementation decision. For the user to
distribute a graph, the user specifies a
partitioning of the graph and a mapping of the
graph to individual processors. Gedae modifies
the graph by inserting send and receive
primitives that run on the separate processors
and maintain the data flow and connectivity of
the graph. The user does not have to modify the
graph to achieve these results.

For example, the following graph has dynamic
queues and is distributed to four processors by
the user:

 Branch

 Mode1

 Merge

 State
Machine

Software A

 Mode3 F

 Mode2 D
 Mode2 E

B
C

It is transformed into a new graph, as seen
below, with send and receive boxes inserted to
manage communications and dynamic queues
also inserted to handle dynamic data flow
boundaries. Other transformations include
modifying the graph to implement strip mining
of vectors, adding primitives to implement
delay, and adding primitives to allow
communication of the graph to the host program
or to other Gedae applications. Data structures
are also created to implement segmentation,
mode control and distributed state coherency.

A sonar signal processing graph will be used to
demonstrate how a graph is transformed into an
implementation. It will be shown how the
transformations can be used to modify the graph
execution without changing the Gedae Language
expression of the graph. The resulting
implementations will be contrasted with how the
same implementations would be achieved using
traditional programming techniques.

 Branch

 Mode1

 State
Machine

Transformed Graph

A

 Mode3 F

 Mode2 D

 Mode2 E

B
C q s r s

q s r

q s r

q s r

r

s r

s r

s r

s r

s r

s r q

q

q

q

 Merge

