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1. Introduction

Dynamic, adaptive, real-time embedded control sys-
tems are present at any level(s) of an enterprise—
e.g., devices in the defense domain such as multi-mode
phased array radars and battle management. These
embedded systems often include“soft”as well as“hard”
time constraints.

Jensen’s time/utility functions [4] (or TUFs) al-
low the semantics of soft time constraints to be pre-
cisely specified. A TUF specifies the utility to the sys-
tem, resulting from the completion of an activity, as
a function of the its completion time. Figure 1 shows
examples of TUF time constraints. TUFs have been
successfully used in two significant, real-time applica-
tions, including an AWACS (Airborne WArning and
Control System) surveillance mode tracker system built
by MITRE and Open Group, and a coastal air defense
system built by CMU and General Dynamics.

When timing constraints are expressed with TUFs,
the scheduling optimality criteria are based on fac-
tors in terms of maximizing accrued utility from those
activities—e.g., maximizing the sum, or the expected
sum, of the activities’ attained utilities. Such criteria
are called Utility Accrual (or UA) criteria, and sequenc-
ing (scheduling, dispatching) algorithms that consider
UA criteria are called UA sequencing algorithms.

Motivated by the need for dynamic schedul-
ing, e.g., UA scheduling, in real-time distributed sys-
tems, the Object Management Group recently adopted
the Real-Time CORBA 2.0 (Dynamic Scheduling)
standard [7] (abbreviated here as RTC21). RTC2 spec-
ifies distributable threads (or DT s) as a program-
ming and scheduling abstraction for system-wide,
end-to-end scheduling in real-time distributed sys-
tems. The distributable thread model is a sub-
set of the distributed thread model that was created in
Jensen’s Archons Project [3].

A DT is a single thread of execution with a glob-
ally unique identifier that transparently extends and
retracts through an arbitrary number of local and re-
mote objects. Concurrency is at the DT-level.

1 Real-Time CORBA 2.0 has been recently renamed Real-
Time CORBA 1.2.

A DT carries its execution context as it transits node
boundaries, including information such as the thread’s
scheduling parameters (e.g., time constraints, execu-
tion time, importance), identity, and security creden-
tials.

We have developed the Tempus middleware that
supports DTs as a programming and scheduling ab-
straction for system-wide, end-to-end scheduling [6].
DTs in Tempus can be subject to time constraints in-
cluding those specified using arbitrarily-shaped TUFs
and timeliness optimality criteria including maximizing
accrued utility. In the rest of this paper, we overview
the Tempus middleware.

2. The Tempus Middleware

Core components of Tempus include an application-
level UA scheduling framework, a portable interceptor,
and a node-local UA scheduling algorithm.

Tempus’ application-level UA scheduling frame-
work, called meta-scheduler provides a mechanism
for implementing UA scheduling algorithms on top of
POSIX RTOSes. It exclusively uses real-time POSIX
APIs and thus enjoys good portability.

Since Tempus exclusively uses POSIX RTOSes as its
underlying base, the abstraction of DTs needs to be im-
plemented as native OS abstractions, such as processes
and threads. Each node in a real-time distributed sys-
tems runs an instance of the portable interceptor com-
ponent. A portable interceptor (PI) is responsible for
mapping a DT to a native OS thread and maintains
that mapping information while the DT has a segment
(active or blocked) on the PI’s residing node.

Scheduling of DTs in Tempus is performed accord-
ing to RTC2’s Case 2 approach, i.e., local scheduling
on each node using propagated timeliness parameters.
Thus, the scheduler instance on each node resolves re-
source dependencies and constructs local schedules in a
way that seeks to maximize locally accrued utility and
thus obtain approximate, globally optimal accrued util-
ity.

A DT may contain one or more potentially nested
scheduling segments. A scheduling segment delimits the
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Figure 1. Example Time Constraints Specified Using TUFs

part of a DT’s control flow that is subject to the spec-
ified time constraints.

The scheduling parameters in Tempus are only
meaningful to the node schedulers, and thus can have
arbitrary format as long as the node schedulers can in-
terpret them properly. In the current version of Tem-

pus, the set of scheduling parameters must first spec-
ify the scheduler to be invoked. Tempus currently
implements eight schedulers, including fixed prior-
ity schedulers, deadline-driven schedulers such as the
Earliest Deadline First (EDF) scheduler, the Depen-
dent Activity Scheduling Algorithm (DASA) sched-
uler [1], and the Generic Utility Scheduling (GUS)
scheduler [5]. In addition, scheduling information as-
sociated with the designated scheduler needs to be
specified, such as priorities for the fixed priority sched-
uler and deadlines for the EDF scheduler.

3. Experimental Results

Our test bed contains a network of PCs running
RedHat Linux and QNX Neutrino operating systems.
The experiments use periodically spawned DTs with
downward-step TUF, decreasing TUF, and parabolic
TUF time constraints. We conducted experiments us-
ing four schedulers, including a RMA scheduler, an
EDF scheduler, a DASA scheduler, and a GUS sched-
uler.

Table 1 shows the mean’s and standard deviations of
the Accrued Utility Ratio (AUR) under the four sched-
ulers. AUR is the ratio of accrued utility to the max-
imal possible utility of all DTs. We observe that (1)
the standard deviations of all performance measure-
ments are small regardless of the mean values, which
suggest that the performance of Tempus is stable and
predictable; and (2) the GUS scheduler outperforms all
other schedulers during “low load” as well “high load.”

4. Conclusions

The Tempus middleware thus illustrates the effec-
tiveness of scheduling DTs using propagated schedul-
ing parameters (including arbitrarily-shaped TUFs) for
node-local scheduling and resource contention reso-
lution. Ongoing efforts include incorporating TMAR
(thread maintenance and repair) protocols [2] into

Load Algorithm Avg(AUR) Std(AUR)

Lowload

RMA 77.262 1.643706
EDF 76.5 0.453045

DASA 77.248 2.123127
GUS 87.604 0.571384

Highload

RMA 64.202 1.105812
EDF 66.662 2.83841

DASA 67.474 2.29438
GUS 80.16 2.146404

Table 1. Performance of Scheduling Policies

Tempus and developing scheduling algorithms for DTs
that use RTC2’s Case 3 and Case 4 approaches.
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