Variable Precision Floating Point Division and Square Root

Miriam Leeser, Xiaojun Wang
Department of Electrical and Computer Engineering
Northeastern University, Boston, MA 02115
mel, xjwang@ece.neu.edu

Division and square root are important operations in many high performance signal processing ap-
plications including matrix inversion, vector normalization, least squares lattice filters and Cholesky
decomposition. We have implemented floating point division and square root designs for our VHDL
variable precision floating point library. These designs are implemented in VHDL and are designed
to make efficient use of FPGA hardware.

Both the division [1] and square root [2] algorithms are based on table lookup and Taylor series
expansion. These algorithms are particularly well-suited for implementation on an FPGA with
embedded RAM and embedded multipliers such as the Altera Stratic and Xilinx Virtex2 devices.
The division and square root components have been incorporated into the framework of our variable
precision floating-point library.

1 Variable Precision Floating-Point Library

Our parameterized floating-point library is composed of three parts: format control, arithmetic op-
erations, and format conversion. Format control includes modules denorm and rnd_ norm. The first
is used for denormalizing (introduction of the implied one bit) and the second is used for rounding
and normalizing. Format conversion includes modules fix2float and float2fix. The first is used
for converting from fixed-point representation (both unsigned and signed) to floating-point repre-
sentation and the second converts in the other direction. Arithmetic operations include modules
fp_add, fp_sub and fp.mul for floating-point addition, subtraction and multiplication respectively.
We recently added floating-point division (fp-div) and floating-point square root (fp_sqrt). For
both floating-point division and square root, we use the small table-lookup method with small mul-
tipliers [1, 2]. These algorithms are both small and elegant. Our result shows that these algorithms
are very well suited to FPGA implementations, and lead to a good tradeoff of area and latency.
Some features of our library are:

e Our parameterized floating-point library is a superset of all the previously published floating-
point formats including IEEE standard format.

e Qur library is flexible. It supports the creation of custom format floating-point datapaths, as
well as hybrid fixed and floating-point implementations.

e Qur library is more complete than all other earlier work with a separate normalization unit,
rounding with support for both “round to zero” and “round to nearest”, and some error
handling features.

e Each component in our library has synchronization signals to aid in the creation of pipelines.

2 Division and Square Root

The division and square root we built are based on previously published algorithms [1, 2]. Both of
these algorithms are based on Taylor Series and use both small table-lookups and small multipliers
to obtain the first few terms of the Taylor Series. These algorithms are both simple and elegant,
and very well suited to FPGA implementations. They are also non-iterative algorithms, unlike
other implementations of division and square root based on Newton-Raphson. This allows these
components to be easily integrated into a larger pipelined design built with other library modules
without decreasing the throughput of the whole design.

Table 1: Cost and Performance for Floating-Point Division

Floating Point Format | 8(2,5) | 16(4,11) | 24(6,17) | 32(8,23) |
number of slices 69 (1%) | 110 (1%) | 254 (1%) | 335 (2%)
number of BlockRAM 1 (1%) 1 (1%) 1 (1%) 7 (7%)
number of 18x18 embedded multiplier 2 (2%) 2 (2%) 8 (8%) 8 (8%)
clock period (ns) 8 10 9 9
maximum frequency (MHz) 124 96 108 110
number of clock cycles to generate final results 10 10 14 14
latency(ns) = clock x number of clock cycles 80 105 129 127
throughput (million results per second) 124 96 108 110

Table 1 shows the cost and performance of four different floating-point formats (including IEEE
single precision format) for division. Results for square root are similar. All our designs are specified
in VHDL and mapped to Xilinx Virtex-II XC2v3000-4 FPGA. All area and timing results in the
above tables are those reported by the Xilinx tools. Our results show that both the area and the
latency of our floating-point division and square root implementations are small. For IEEE single
precision format division, it takes 14 clock cycles to generate final results with a 9ns clock period,
so the latency is only 127ns. Since it can be fully pipelined, the throughput is high at 110 million
results per second. This design takes only 2% of the slices, 7% of the BlockRAMs, and 8% of the
18x18 embedded multipliers on the FPGA chip, which is a very small design. Our floating-point
square root shows the similar good tradeoff of area, latency and throughput.

To demonstrate the division implementation, we are incorporating it into our implementation of
the K-means clustering algorithm applied to multispectral satellite images [3] K-means clustering is
an iterative algorithm where the total number of clusters is known in advance. The algorithm works
as follows. First means are initialized using a hierarchical method. During each iteration, each pixel
of the image is assigned to the closest cluster based on the distance between each pixel and each of
the K cluster centers. At the end of one iteration, the new mean of each cluster is calculated based
on the new pixel assignments and is used for the next iteration as the center of each cluster. To
obtain the new mean of each cluster, an accumulator and a counter are associated with each cluster.
Once a pixel is assigned to a cluster, the value of the pixel is added to the accumulator and the
counter is incremented. The new mean is obtained by dividing the accumulator value by the counter
value. In our previous design [3] this mean updating step is done on the host because it requires
floating-point division. With our new fp_div module, we are able to implement the mean updating
in FPGA hardware. This greatly reduces the communication between host and FPGA board and
further accelerates the runtime.

References

[1] P. Hung, H. Fahmy, O. Mencer, and M. J. Flynn, “Fast division algorithm with a small lookup ta-
ble,” in Asilomar Conference on Signals,Systems and Computers, vol. 2, pp. 1465-1468, Novem-
ber 1999.

[2] M. D. Ercegovac, T. Lang, J.-M. Muller, and A. Tisserand, “Reciprocation, square root, inverse
square root, and some elementary functions using small multipliers,” IFEE Transactions on
Computers, vol. 49, pp. 628-637, July 2000.

[3] P. Belanovic and M. Leeser, “A library of parameterized modules for floating-point arithmetic
and their use,” in High Performance Embedded Computing, September 2002.

