
HPCS HPCchallenge Benchmark Suite

David Koester
The MITRE Corporation

Email Address: dkoester@mitre.org

Jack Dongarra and Piotr Luszczek
ICL/UT

Email Addresses: {dongarra, luszczek}@cs.utk.edu

Abstract
The Defense Advanced Research Projects Agency (DARPA) High Productivity Computing Systems
(HPCS) HPCchallenge Benchmarks examine the performance of High Performance Computing (HPC)
architectures using kernels with more challenging memory access patterns than just the High Performance
LINPACK (HPL) benchmark used in the Top500 list. The HPCchallenge Benchmarks build on the HPL
framework and augment the Top500 list by providing benchmarks that bound the performance of many real
applications as a function of memory access locality characteristics. The real utility of the HPCchallenge
benchmarks are that architectures can be described with a wider range of metrics than just Flop/s from HPL.
Even a small percentage of random memory accesses in real applications can significantly affect the overall
performance of that application on architectures not designed to minimize or hide memory latency. The
HPCchallenge Benchmarks includes a new metric — Giga UPdates per Second — and a new benchmark
— RandomAccess — to measure the ability of an architecture to access memory randomly, i.e., with no
locality. When looking only at HPL performance and the Top500 List, inexpensive build-your-own
clusters appear to be much more cost effective than more sophisticated HPC architectures. HPCchallenge
Benchmarks provide users with additional information to justify policy and purchasing decisions. We will
compare the measured HPCchallenge Benchmark performance on various HPC architectures — from Cray
X1s to Beowulf clusters — in the presentation and paper. Additional information on the HPCchallenge
Benchmarks can be found at http://icl.cs.utk.edu/hpcc/

Introduction
At SC2003 in Phoenix (15-21 November 2003), Jack Dongarra (ICL/UT) announced the release of a new
benchmark suite — the HPCchallenge Benchmarks — that examine the performance of HPC architectures
using kernels with more challenging memory access patterns than High Performance Linpack (HPL) used
in the Top500 list. The HPCchallenge Benchmarks are being designed to complement the Top500 list and
provide benchmarks that bound the performance of many real applications as a function of memory access
characteristics — e.g., spatial and temporal locality. Development of the HPCchallenge Benchmarks is
being funded by the Defense Advanced Research Projects Agency (DARPA) High Productivity Computing
Systems (HPCS) Program.

The HPCchallenge Benchmark Kernels
Local Global

DGEMM (matrix x matrix multiply) High Performance LINPACK (HPL)
STREAM

• COPY
• SCALE
• ADD
• TRIADD

PTRANS — parallel matrix transpose

RandomAccess (MPI)RandomAccess
1D FFT 1D FFT

I/O
b_eff — effective bandwidth benchmark

mailto:dkoester@mitre.org
mailto:luszczek}@cs.utk.edu

Additional information on the HPCchallenge Benchmarks can be found at http://icl.cs.utk.edu/hpcc/.

Flop/s
The Flop/s metric from HPL has been the de facto standard for comparing High Performance Computers
for many years. HPL works well on all architectures ― even cache-based, distributed memory
multiprocessors ― and the measured performance may not be representative of a wide range of real user
applications like adaptive multi-physics simulations used in weapons and vehicle design and weather,
climate models, and defense applications. HPL is more compute friendly than these applications because it
has more extensive memory reuse in the Level 3 BLAS-based calculations. .

Memory Performance
There is a need for benchmarks that test memory performance. When looking only at HPL performance
and the Top500 List, inexpensive build-your-own clusters appear to be much more cost effective than more
sophisticated HPC architectures. HPL has high spatial and temporal locality ― characteristics shared by
few real user applications. HPCchallenge benchmarks provide users with additional information to justify
policy and purchasing decisions

Not only does the Japanese Earth Simulator outperform the top American systems on the HPL benchmark
(Tflop/s), the differences in bandwidth performance on John McCalpin’s STREAM TRIAD benchmark
(Level 1 BLAS) shows even greater performance disparity. The Earth Simulator outperforms the ASCI Q
by a factor of 4.64 on HPL. Meanwhile, the higher bandwidth memory and interconnect systems of the
Earth Simulator are clearly evident as it outperforms ASCI Q by a factor of 36.25 on STREAM TRIAD. In
the presentation and paper, we will compare the measured HPCchallenge Benchmark performance on
various HPC architectures — from Cray X1s to Beowulf clusters — using the updated results at
http://icl.cs.utk.edu/hpcc/hpcc_results.cgi

Even a small percentage of random memory accesses in real applications can significantly affect the overall
performance of that application on architectures not designed to minimize or hide memory latency.
Memory latency has not kept up with Moore’s Law. Moore’s Law hypothesizes a 60% compound growth
rate per year for microprocessor “performance”, while memory latency has been improving at a compound
rate of only 7% per year. The memory-processor performance gap has been growing at a rate of over 50%
per year since 1980. The HPCchallenge Benchmarks includes a new metric — Giga UPdates per Second
— and a new benchmark — RandomAccess — to measure the ability of an architecture to access memory
randomly, i.e., with no locality.

GUPS is calculated by identifying the number of memory locations that can be randomly updated
in one second, divided by 1 billion (1e9). The term “randomly” means that there is little
relationship between one address to be updated and the next, except that they occur in the space of
½ the total system memory. An update is a read-modify-write operation on a table of 64-bit words.
An address is generated, the value at that address read from memory, modified by an integer
operation (add, and, or, xor) with a literal value, and that new value is written back to memory

	Abstract

