
Sparse Linear Solver for Power System Analyis

using FPGA ∗

J. R. Johnson† P. Nagvajara‡ C. Nwankpa§

1 Extended Abstract

Load flow computation and contingency analysis is the foundation of power
system analysis. Numerical solution to load flow equations are typically
computed using Newton-Raphson iteration, and the most time consuming
component of the computation is the solution of a sparse linear system
needed for the update each iteration. When an appropriate elimination
ordering is used, direct solvers are more effective than iterative solvers. In
practice these systems involve a larger number of variables (50,000 or more);
however, when the sparsity is utilized effectively these systems can be solved
in a modest amount of time (seconds). Despite the modest computation
time for the linear solver, the number of systems that must be solved is
large and current computation platforms and approaches do not yield the
desired performance. Because of the relatively small granularity of the linear
solver, the use of a coarse-grained parallel solver does not provide an effective
means to improve performance. In this talk, it is argued that a hardware
solution, implemented in FPGA, using fine-grained parallelism, provides a
cost-effective means to achieve the desired performance.

Previous work [1, 2, 3] has shown that FPGA can be effectively used
for floating-point intensive scientific computation. It was shown that high
MFLOP rates could be achieved by utilizing multiple floating-point units,

∗This work was partially supported by DOE grant #ER63384, PowerGrid - A Com-
putation Engine for Large-Scale Electric Networks

†Department of Computer Science, Drexel University, Philadelphia, PA 19104. email:
jjohnson@cs.drexel.edu

‡Department of Electrical and Computer Engineering, Drexel University, Philadelphia,
PA 19104. email: nagvajara@ece.drexel.edu

§Department of Electrical and Computer Engineering, Drexel University, Philadelphia,
PA 19104. email: chika@nwankpa.ece.drexel.edu

1



and FPGA could outperform PCs and workstations, running at much higher-
lock rates, on dense matrix computations. The current work argues that
similar benefit can be obtained for the sparse matrix computations arising
in power system analysis. These conclusions are based on operation counts
and system analysis for a collection of benchmark systems arising in practice.

Benchmark data indicates that between 1 and 3 percent of peak floating
point performance was obtained using a state-of-the-art sparse solver (UMF-
PACK) running on 2.60 GHz Pentium 4. The solve time for the largest
system (50,092 unknowns and 361,530 non-zero entries) was 1.39 seconds.

A pipelined floating point core was designed for the Altera Stratix fam-
ily of FPGAs. An instantiation of the core on an Altera Stratix with speed
rating (-5) operates at 200 MHz for addition and multiplication and 70 MHz
for divion. Moreover, there is sufficient room for 10 units. Assuming 100%
utilization of eight FPUs, the projected performance for the FPGA imple-
mentation is 0.069 seconds, which provides a 20-fold improvement. While
it is optimistic to assume perfect efficiency, hard-wired control should pro-
vide substantially better efficiency than available with a standard processor.
Moreover, analysis of the LU factorization shows that the average number
of updates per row throughout the factorization is 20.3, which provides suf-
ficient parallelism to benefit from 8 FPUs. An implementation, and more
detailed model, is being carried out to determine the attainable efficiency.

References

[1] J. Johnson, P. Nagvajara, and C. Nwankpa. High-Performance Linear
Algebra Processor using FPGA. In Proc. High Performance Embedded
Computing (HPEC 2003). Sept. 22-24, 2003.

[2] K. Underwood. FPGAs vs. CPUs: Trends in Peak Floating-Point Per-
formance. In Proc. International Symposium on Field-Programmable
Gate Arrays (FPGA 2004). Feb. 22-24, 2004.

[3] Ling Zhuo and Viktor K. Prasanna. Scalable and Modular Algorithms for
Floating-Point Matrix Multiplication on FPGAs. In Proc. International
Parallel and Distributed Processing Symposium (IPDPS 2004), 2004.

2




