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A key feature of many new computer architectures is that theyare composed of multiple tiles, each of which is
a fully capable processor. Tiled architectures are attractive alternatives to monolithic computer architecture designs
because they allow a larger design to be built from smaller modules and limit the number of wires that need to span
the entire chip. Examples of tiled architectures include many under development for the DARPA/IPTO Polymor-
phous Computer Architectures (PCA) program, including theMIT Raw machine [13], the Stanford Smart memories
project [8], and the University of Texas TRIPS machine [9].

The decoupled systolic architecture (DSA) represents a canonical abstract machine that encompasses many of
the key features of single-chip tiled architectures [4] including the PCAs and other emerging architectures such as
Scale [6], Wavescalar [12], and Synchroscalar [10].Stream algorithms are defined as the family of algorithms which
can achieve100 % computational efficiency on the DSA. The DSA and stream algorithms provide a rigorous analytical
framework for reasoning about the performance of algorithms on modern architectures. This framework is unique in
that it explicitly penalizes algorithmic implementationsthat make use of long wires and/or large local memories while
rewarding those algorithms that can efficiently execute using only a small, bounded amount of local memory and a
next-neighbor interconnect network. Thus, this frameworkmakes an excellent match for evaluating architectures faced
with the growing physical concerns of wire delay [3] and the energy dissipation of on-chip memory [2, 5].

Stream algorithms are therefore important because the existence of a stream algorithm for a particular problem
implies a scalable, computation, energy, and area efficientsolution to that problem on many real-world architectures.
Stream algorithms decouple memory access from computation, performing memory access on tiles on the periphery
of the chip and performing computation in a systolic fashionon the tiles in the interior of the chip. For a problem of
sizeN on anR×R array of tiles, the efficiency of the problem is the total number of operationsC(N) divided by the
product of the number of cyclesT (N, R) and the total number of memory tilesM(R) and compute tilesP (R),

E(N, R) =
C(N)

T (N, R) ∗ (M(R) + P (R))
. (1)

For a conventional architecture, the total number of tiles is equal to 1. A necessary condition forE(N, R) to scale with
the size of the array is thatM(R) be asymptotically smaller thanP (R). An algorithm that meets the requirement that
P (R) = o(M(R)) is decoupling efficient, because it efficiently decouples memory accesses from computation [11].
An algorithm iscomputation efficientif limσ,R→∞ E(σ, R) = 1 whereσ = N/R. Computation efficient algorithms
implemented on an array of fixed size scale toward an asymptotic limit on performance as data size increases, and this
asymptotic limit becomes larger as the array sizeR increases. Stream algorithms are therefore those algorithms that
meet the computation efficiency condition. Stream algorithms for matrix multiplication, QR factorization, convolution,
and other applications have been discovered and implemented on the Raw cycle accurate simulator [4]. Comparison of
these algorithms with conventional implementations on conventional architectures such as the PowerPC G4 [7] shows
that stream algorithms have the potential to achieve higherefficiency on many different problems.

This presentation focuses on understanding when a stream algorithm exists for a given kernel. We do so by con-
sidering the directed acyclic graph (DAG) for a particular implementation of the kernel. Nodes in the DAG represent
inputs, outputs, or intermediate products of the algorithm, and edges from nodeA to nodeB in the DAG show that
A is used to computeB. We can characterize the DAG for an algorithm by the ratio of inputs,W , to the number of
intermediate products,Q, for which any one value is directly required. For example, in an algorithm to multiply two
N × N matricesA andB, elementi, j of the output matrixC is computed asci,j =

∑N

k=1
aikbkj . That is, for each

output, there areW = 2N inputs used and a total ofQ = N intermediate products (the partial sums) computed. The
stream algorithm implementation of matrix multiply meets the compute efficiency condition. Matrix multiplication is
an example of a kernel with aconstant ratioof W to Q. All known algorithms – including QR, SVD, convolution –
with a constant ratio ofW to Q have implementations that meet the compute efficiency condition.

In contrast, consider an algorithm to compute the FFT of a length-N vector. To compute any particular output of the
FFT, allN inputs are required, and (as is well known) each input directly contributes tolog

2
(N) intermediate products.
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Figure 1: Comparison of Raw FFT throughput, measured in the Raw cycle-accurate simulator, to FFTW throughput
on the PowerPC G4 and Xeon.

For the radix-2 FFT algorithm, the ratio ofW = O(N)to Q = O(log
2
(N)) is asymptoticallygreaterthan a constant.

Because any stream algorithm for the FFT must meet the decoupling efficiency condition, we cannot use local memory
to buffer the large number of inputs. Instead inputs must reside in the network while compute tiles are working. For the
FFT, with aW/Q = O(N)/O(log

2
(N)), this implies that the maximum distance that any piece of data must travel is

greater than the number of intermediate calculations in which the data is used. Therefore, communication costs cannot
be effectively amortized in the systolic implementation ona tiled architecture. The factorT in the denominator of the
efficiency expression (1) will have a lower bound that is limited by the size of the array, meaning that the efficiency
cannot approach a limit of 1 as the array sizeR increases. A stream algorithm implementation for the FFT isstill
an open research problem. Stream algorithm techniques can be used to implement an efficient implementation of the
radix-4 FFT for a 4x4 tile array, but this implementation is not scalable and performance will be worse on larger Raw
systems. Simulated throughput of this algorithm is compared to the throughput of FFTW [1] on the 2.8 GHz Pentium
4 and 733 MHz G4 in Figure 1. The Raw FFT achieves high performance for large data sizes, and offers performance
that is more stable across a range of data sizes.

In this talk, we will describe the implementation of FFT, QR factorization, and CFAR kernels on the Raw simulator
and Raw board. We examine the performance of these kernels and compare to conventional implementations on the
Pentium and G4 architectures. Finally, we characterize theDAG of each kernel and discuss how the DAG influences
the implementation on Raw and on tiled architectures in general.
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