

Software Architecture for Morphing in Polymorphous Computing Architectures

Daniel P. Campbell Mark A. Richards Dennis M. Cottel, Randall R. Judd
Georgia Tech Research

Institute
Electrical & Computer

Engineering
Space & Naval Warfare Systems Center

San Diego
Georgia Institute of Technology, Atlanta, GA 30332

1. Introduction
The Polymorphous Computing Architectures (PCA) program is a
Defense Advanced Research Projects Agency (DARPA) effort to
develop new embedded computing platforms with very strong,
rapid in-mission reconfigurability. Target applications range
from military platforms that must adapt to rapidly changing
mission parameters, to embedded network controllers whose
optimal configuration of hardware resources will change in
response to the traffic and environmental conditions they face.
The PCA program “core projects” working to develop
microprocessors that implement polymorphous capabilities
include Smart Memories, Raw, TRIPS, and MONARCH;
references for all are available in [1]. The chips under
development in these projects have several characteristics in
common. These are typically tiled structures composed from
replicated, fully capable computing cores, reconfigurable memory
and cache elements, and a rich set of reconfigurable data paths,
network interfaces, and I/O paths. Each can operate in streaming
or threaded modes. Each has mechanisms for aggregating
individual processor tiles into larger compound processor units.
They differ in their approach for aggregating processors and in
their emphasis on processor, memory, or communication design.

Figure 1 illustrates a generic PCA microarchitecture.
This ability to aggregate varying numbers and types of elements
on a PCA chip means that the chip can be effectively partitioned
into multiple processors of similar or different types, with each
partition assigned to a different portion of the application program
or even to different programs. For instance, one portion of a PCA

device could be optimized for stream processing and dedicated to
a sensor processing dataflow computation, while another is
configured for conventional thread processing and allocated to
conventional control processing. Furthermore, the number of chip
tiles dedicated to each processor type could be varied based on
expected loads.
To exploit the capabilities of PCA hardware while retaining as
much end-user portability and performance as possible, the
Morphware Forum (www.morphware.org), an informal
consortium of the PCA contractors and other selected participants,
is creating an application development framework, called the
Morphware Stable Interface (MSI). An overview of the MSI is
available in [1].
A key capability envisioned for PCA systems is morphing, the
reconfiguration and re-allocation of PCA hardware resources
within a chip in response to various events.. Morphing is
fundamentally enabled by the reconfigurable hardware
microarchitecture of PCA chips, but is made accessible to the
programming environment through the MSI. Thus, a major
software design issue for the PCA program is how to structure the
MSI so as to support morphing while maintaining portability
across the various PCA targets.

2. Types of Morphing
The MSI envisions a component-based application software
architecture. Components provide natural and intuitive
boundaries for run-time reconfiguration of hardware. In general,
multiple implementations of various units of functionality (e.g., a
fast Fourier transform) will exist as different components, each
offering different trades of performance and system requirements,
and capable of being compiled to differing amounts of hardware
resources. Morphing then implies changing either the particular
component implementations in use, the resources assigned to the
components, or both. Different types of morphing can thus be
classified based on three orthogonal characteristics:

• whether the application code directly makes an
application programming interface (API) call to initiate
morphing, or it is done invisibly to the user by either the
run-time system or the compiler;

• whether the component continues to execute or is
reloaded or replaced with an alternate component; and

• whether the resources allocated to the application must
change or stay the same

The Morphware Forum has developed a taxonomy of morph
types, summarized in Table 1, to describe the various situations.

Figure 1. Generic PCA chip micro-architecture.

PCA chip

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

re
pl

ic
at

ed
 ti

le
re

pl
ic

at
ed

 ti
le

replicated tile
replicated tile

P Reconfigurable processor

M Reconfigurable memory

C Reconfigurable cache

Fixed communication

Configurable communication

PCA chip

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

re
pl

ic
at

ed
 ti

le
re

pl
ic

at
ed

 ti
le

replicated tile
replicated tile

P Reconfigurable processor

M Reconfigurable memory

C Reconfigurable cache

Fixed communication

Configurable communication

Table 1. PCA Morphing Taxonomy

Run-time System Application Programmer Compiling System
 Components

continue
Components

change
Components

continue
Components

change
Components

continue
Components

change

Type 0a Type 1a Type 2a Type 3a Type 4a Type 5a

Resource
allocation doesn’t

change

Run-time
environment

changes
transparently to the
running application.

Run-time system
changes

components to
reconfigured but
equivalent set of

resources.

Application makes
API call to make

suggestions.

Application makes
API call to change
processing mode
but does so within
existing resource

set.

Compiler
instructions
reconfigure
allocated

resources.

Compiler switches
to a different library

able to use the
same resources.

Type 0b Type 1b Type 2b Type 3b Type 4b Type 5b

Resource
allocation
changes

Run-time system
changes resource

allocation of a
running application
transparently to the

application.

Run-time system
configures

resources and
loads components

at application
startup.

Application makes
API call to give up

or gain some
resources.

Application makes
API call to add or

replace one or
more components

using different
resources.

Compiler requests
different resources
to meet change in

performance
specified by
metadata.

Compiler switches
to a different library
that uses different

resources.

3. Morphing in the MSI
3.1 Compilation Architecture
Portability across alternative PCA target devices is obtained in the
MSI by using a two-level compilation architecture, as shown in
Figure 2. The application program is partitioned by the user or by
tools yet to be developed into streaming units and non-streaming
(conventional) units. The former are expressed in a specialized
streaming language such as Brook or StreamIt, while the latter are
in conventional C or C++ code. The high level compiler (HLC)
takes in this user source code as well as a machine model (MM), a
metadata description of the resources available on the PCA
devices to the compilation unit and their configuration.

The HLC compiles the streaming input units to a stream virtual
machine (SVM) description. The HLC utilizes the information in
the particular MM provided with the source code to optimize the
coarse-grain parallelization of the streaming program unit. Thus,
the same application code will produce different SVM codes,
depending on the machine model description of the available
resources. This mechanism provides the basic capability for
portability across multiple target machines, as well as the
capability to vary the amount of resources assigned to a functional
unit within the same machine.

Threaded code is expressed in terms of a thread virtual machine
(TVM), in turn composed of a user-level VM (UVM) and a
hardware architecture layer (HAL). Other than expressing the
output in these machine-neutral APIs, the HLC largely passes
threaded code to the output without optimization. The machine-
specific low level compilers (LLCs) then compile the VM code
for their particular target PCA machine, performing further fine-
grained parallelization and optimizations as appropriate.

3.2 Morphing Mechanisms
As seen in Table 1, some morphing operations are defined by the
compiler, while others are controlled by the run-time system,
most likely in the form of a yet-to-be-defined resource manager.
Thus, morphing is actually implemented by various levels of the
MSI, depending on the type of morph. Compiler-directed morphs
can be the result of changes in the machine model for the target
hardware, of coarse-grain optimization decisions made by the
HLC, or of fine-grain configuration decisions made by the LLC.
Morphs that change the executing components must be initiated
and controlled by the run-time system of the PCA machine.
Several methods for representing the various forms of morphing
have been proposed, including modeling morphs as program
branches, explicit control of variables representing machine state
at the SAPI or SAAL levels, and marking sections of code with
performance and resource constraint expressions. The candidate
approaches to date will be described and compared, considering
such issues as the level of the MSI at which they are
implemented; granularity; and visibility to and controllability by
the programmer Selecting and vetting the appropriate interfaces
to represent morphing is currently a primary focus of the
Morphware Forum.

4. References
[1] The Morphware Forum, “Introduction to Morphware: Software

Architecture for Polymorphous Computing Architectures”, version
1.0, Feb. 23, 2004. Available at www.morphware.org.

Figure 2. MSI Compilation Architecture.

StreamIt Brook C/C++ Others…
Stable APIs (SAPI)

Stable Architecture
Abstraction Layer
(SAAL)

Binaries

Low Level Compilers

TRIPS MONARCH Smart Memories RAW Others...

High Level Compilers Target
Machine Model

Virtual Machine API
Stream VM

API
User-level VM API

Hardware Architecture Layer

Virtual Machine API
Stream VM

API
User-level VM API

Hardware Architecture Layer

