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Abstract 
Space-Based Radar (SBR) processing is a processor- and 
communication-intensive HPEC application that presents 
unique design challenges. This talk will concentrate on the 
presentation of simulation results of mapping a parallel 
Ground Moving Target Indicator (GMTI) application on an 
embedded multiprocessor satellite processing system 
featuring a RapidIO interconnection network. We consider 
three partitionings of a real-time GMTI algorithm executed 
on systems of different sizes and topologies. Each 
partitioning's system performance and algorithm 
scalability on various RapidIO systems is examined. 

Introduction  
RapidIO is an emerging open standard for high-
speed, embedded switched interconnection networks 
which supports data rates up to approximately 60 
Gbps. It is an open standard [1, 2] steered by a non-
profit organization known as the RapidIO Trade 
Association. RapidIO uses Low-Voltage Differential 
Signaling (LVDS) to minimize power usage at high 
clock speeds, and therefore is appropriate for use in 
HPEC systems. RapidIO is the latest commercial-off-
the-shelf (COTS) technology to be considered 
practical for inclusion in military embedded networks 
to improve cost-effectiveness and scalability. Moving 
from bus designs to switched interconnects will 
substantially increase the cost-effectiveness, 
robustness and raw network performance of future 
embedded systems.  

GMTI is an important application in military 
operations, since moving targets may be laid over a 
map of a battlefield for strategic planning during a 
conflict. GMTI works best when combined with 
some form of airborne radar system. Since space is 
the ultimate "high ground" for radar systems, having 
GMTI available in an SBR system is advantageous.  
The challenge for HPEC systems is to provide real-
time data in-system with minimal latency. In 
traditional air-based GMTI systems, a high-
performance cluster of workstations is used to 
process incoming radar data [3].  As GMTI requires 
costly adaptive processing (including Space-Time 
Adaptive Processing or STAP [4]) of high-resolution 
data, the algorithm imposes severe processing and 

communication challenges on space-based embedded 
systems with strict power, size, weight, and radiation 
constraints.  

In order to effectively design RapidIO-based 
architectures, it is essential to fully understand 
RapidIO's strengths and weaknesses. A simulation-
based testbed provides an ideal environment for 
performing tradeoff studies on RapidIO's salient 
features; therefore, we developed a simulation 
environment to prototype and evaluate RapidIO-
based multiprocessor satellite systems for Space-
Based Radar (SBR) applications within our discrete-
event simulator of choice, Mission-Level Designer 
[5]. Our RapidIO prototyping environment 
incorporates moderate-fidelity systems and 
components including RapidIO switches, end-points 
and processor models. This prototyping environment 
has been used to predict the performance of future 
RapidIO space-based GMTI systems, as well as 
examine possible power and scalability limitations 
the technology may impose.  

Experimental Setup  
We have started with a baseline GMTI algorithm and 
have employed three different decomposition 
strategies, including a “straightforward” approach, a 
staggered approach, and a parallel-pipelined 
approach. The straightforward approach maps the 
incoming data set for processing equally across each 
of the available processors. Since the GMTI 
algorithm is typically composed of signal processing 
procedures with no interprocessor communication 
during each stage, the algorithm can be considered 
embarrassingly parallel. The staggered partitioning 
method is based on the approach described in [6]. 
This approach is similar to the straightforward 
mapping approach, except incoming data is sent to 
groups of processors in a staggered fashion. Under 
this approach, each processor receives a larger 
amount of data to process at a time, but receives this 
data less frequently. Our parallel-pipelined approach 
is a simplified version of one presented in [7], 
adapted to fit our vector-based processor models and 
RapidIO interconnection network. We split the 
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pipeline into four stages, with specific groups of 
processors in the system dedicated to each stage.  

A complete description of all system designs and 
network tradeoffs performed in the course of this 
study will appear in the full presentation. Due to page 
limitations, a condensed version follows. The sensors 
created new image data at a rate of 4.6 Gbps. 
Processors were modeled to perform all or a 
subsection of the GMTI algorithm as the partitioning 
warranted. RapidIO-related parameters for endpoints 
include a 250MHz physical-layer clock rate, 
input/output buffer sizes of 8 packets, and physical-
layer link width of 16 bits, among others. RapidIO 
switch model parameters include an average memory 
read/write latency of 72 ns and a central memory size 
of 10000 bytes, among others.  

Results  
Figure 1 shows a summary of the results of each of 
the three partitioning strategies executed on systems 
of different sizes. The results show a system of 24 
nodes is required to meet the application processing 
requirements of one coherent processing interval 
(CPI) per 256ms (denoted by the horizontal bar in the 
figure). The straightforward partitioning method 
provides the best raw performance on the RapidIO 
system, but the pipelining partitioning method may 
provide a more cost-effective strategy if individual 
processors for each GMTI step can be produced in a 
less expensive manner than an all-inclusive design. 
The staggered approach did not perform as well as 
the other two due to communication inefficiency. A 
broad array of additional results describing system 
design tradeoffs will be included in the final 
presentation but are omitted here due to space 
limitations. 

Conclusions  
The inclusion of RapidIO in future satellite payload 
processing systems is likely to improve performance 
as well as cost effectiveness of embedded SBR 
platforms. In order to prototype and predict the 
performance of future RapidIO space-based GMTI 
systems, simulation models were designed and 
developed using the Mission-Level Designer 
discrete-event simulator. Several systems, RapidIO 
versions, and GMTI decompositions were developed 
on which a tradeoff analysis was performed. The 
results showed a 24-processor solution met the 
algorithm's real-time requirements. The 
straightforward partitioning method provides the best 
raw performance on the RapidIO system, but the 
pipelining partitioning method may provide a more 

cost-effective strategy for some projects. RapidIO 
and other COTS-based switched interconnect designs 
have the potential to outperform traditional bus 
designs in embedded systems.  

Future directions for this work may include 
mapping other SBR algorithms with different 
processing characteristics such as Synthetic Aperture 
Radar (SAR). In addition, now that we have an initial 
prototyping environment developed, we plan to 
examine other RapidIO-specific design 
considerations and system development options.  
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Figure 1: System throughput 
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