
Virtual Prototyping and Performance Analysis of RapidIO-based
System Architectures for Space-Based Radar

David Bueno, Chris Conger, Adam Leko, Ian Troxel and Alan D. George

University of Florida
Phone: 352-392-9034

Email Addresses: {bueno, conger, leko, troxel, george}@hcs.ufl.edu

Abstract
Space-Based Radar (SBR) processing is a processor- and
communication-intensive HPEC application that presents
unique design challenges. This talk will concentrate on the
presentation of simulation results of mapping a parallel
Ground Moving Target Indicator (GMTI) application on an
embedded multiprocessor satellite processing system
featuring a RapidIO interconnection network. We consider
three partitionings of a real-time GMTI algorithm executed
on systems of different sizes and topologies. Each
partitioning's system performance and algorithm
scalability on various RapidIO systems is examined.

Introduction
RapidIO is an emerging open standard for high-
speed, embedded switched interconnection networks
which supports data rates up to approximately 60
Gbps. It is an open standard [1, 2] steered by a non-
profit organization known as the RapidIO Trade
Association. RapidIO uses Low-Voltage Differential
Signaling (LVDS) to minimize power usage at high
clock speeds, and therefore is appropriate for use in
HPEC systems. RapidIO is the latest commercial-off-
the-shelf (COTS) technology to be considered
practical for inclusion in military embedded networks
to improve cost-effectiveness and scalability. Moving
from bus designs to switched interconnects will
substantially increase the cost-effectiveness,
robustness and raw network performance of future
embedded systems.

GMTI is an important application in military
operations, since moving targets may be laid over a
map of a battlefield for strategic planning during a
conflict. GMTI works best when combined with
some form of airborne radar system. Since space is
the ultimate "high ground" for radar systems, having
GMTI available in an SBR system is advantageous.
The challenge for HPEC systems is to provide real-
time data in-system with minimal latency. In
traditional air-based GMTI systems, a high-
performance cluster of workstations is used to
process incoming radar data [3]. As GMTI requires
costly adaptive processing (including Space-Time
Adaptive Processing or STAP [4]) of high-resolution
data, the algorithm imposes severe processing and

communication challenges on space-based embedded
systems with strict power, size, weight, and radiation
constraints.

In order to effectively design RapidIO-based
architectures, it is essential to fully understand
RapidIO's strengths and weaknesses. A simulation-
based testbed provides an ideal environment for
performing tradeoff studies on RapidIO's salient
features; therefore, we developed a simulation
environment to prototype and evaluate RapidIO-
based multiprocessor satellite systems for Space-
Based Radar (SBR) applications within our discrete-
event simulator of choice, Mission-Level Designer
[5]. Our RapidIO prototyping environment
incorporates moderate-fidelity systems and
components including RapidIO switches, end-points
and processor models. This prototyping environment
has been used to predict the performance of future
RapidIO space-based GMTI systems, as well as
examine possible power and scalability limitations
the technology may impose.

Experimental Setup
We have started with a baseline GMTI algorithm and
have employed three different decomposition
strategies, including a “straightforward” approach, a
staggered approach, and a parallel-pipelined
approach. The straightforward approach maps the
incoming data set for processing equally across each
of the available processors. Since the GMTI
algorithm is typically composed of signal processing
procedures with no interprocessor communication
during each stage, the algorithm can be considered
embarrassingly parallel. The staggered partitioning
method is based on the approach described in [6].
This approach is similar to the straightforward
mapping approach, except incoming data is sent to
groups of processors in a staggered fashion. Under
this approach, each processor receives a larger
amount of data to process at a time, but receives this
data less frequently. Our parallel-pipelined approach
is a simplified version of one presented in [7],
adapted to fit our vector-based processor models and
RapidIO interconnection network. We split the

1

pipeline into four stages, with specific groups of
processors in the system dedicated to each stage.

A complete description of all system designs and
network tradeoffs performed in the course of this
study will appear in the full presentation. Due to page
limitations, a condensed version follows. The sensors
created new image data at a rate of 4.6 Gbps.
Processors were modeled to perform all or a
subsection of the GMTI algorithm as the partitioning
warranted. RapidIO-related parameters for endpoints
include a 250MHz physical-layer clock rate,
input/output buffer sizes of 8 packets, and physical-
layer link width of 16 bits, among others. RapidIO
switch model parameters include an average memory
read/write latency of 72 ns and a central memory size
of 10000 bytes, among others.

Results
Figure 1 shows a summary of the results of each of
the three partitioning strategies executed on systems
of different sizes. The results show a system of 24
nodes is required to meet the application processing
requirements of one coherent processing interval
(CPI) per 256ms (denoted by the horizontal bar in the
figure). The straightforward partitioning method
provides the best raw performance on the RapidIO
system, but the pipelining partitioning method may
provide a more cost-effective strategy if individual
processors for each GMTI step can be produced in a
less expensive manner than an all-inclusive design.
The staggered approach did not perform as well as
the other two due to communication inefficiency. A
broad array of additional results describing system
design tradeoffs will be included in the final
presentation but are omitted here due to space
limitations.

Conclusions
The inclusion of RapidIO in future satellite payload
processing systems is likely to improve performance
as well as cost effectiveness of embedded SBR
platforms. In order to prototype and predict the
performance of future RapidIO space-based GMTI
systems, simulation models were designed and
developed using the Mission-Level Designer
discrete-event simulator. Several systems, RapidIO
versions, and GMTI decompositions were developed
on which a tradeoff analysis was performed. The
results showed a 24-processor solution met the
algorithm's real-time requirements. The
straightforward partitioning method provides the best
raw performance on the RapidIO system, but the
pipelining partitioning method may provide a more

cost-effective strategy for some projects. RapidIO
and other COTS-based switched interconnect designs
have the potential to outperform traditional bus
designs in embedded systems.

Future directions for this work may include
mapping other SBR algorithms with different
processing characteristics such as Synthetic Aperture
Radar (SAR). In addition, now that we have an initial
prototyping environment developed, we plan to
examine other RapidIO-specific design
considerations and system development options.

Acknowledgements
We wish to thank Honeywell Space Systems in
Clearwater, FL for their funding and technical
guidance in support of this research.

References
[1] “RapidIO Interconnect Specification (Parts I-

IV),” RapidIO Trade Association, June 2002.
[2] “RapidIO Interconnect Specification, Part VI:

Physical Layer 1x/4x LP-Serial Specification.”
RapidIO Trade Association, June 2002.

[3] M. Linderman and R. Linderman, “Real-Time
STAP Demonstration on an Embedded High
Performance Computer,” Proc. of the IEEE
National Radar Conference, Syracuse, NY,
May 13-15, 1997.

[4] “Space-Time Adaptive Processing for Air-
borne Radar,” Tech. Rep. 1015, MIT Lincoln
Laboratory, 1994.

[5] G. Schorcht, I. Troxel, K. Farhangian, P.
Unger, D. Zinn, C. Mick, A. George, and H.
Salzwedel, “System-Level Simulation Mod-
eling with MLDesigner,” Proc. of 11th
IEEE/ACM International Symposium on
Modeling, Analysis, and Simulation of Com-
puter and Telecommunications Systems
(MASCOTS), Orlando, FL, October 12-15,
2003.

[6] R. Brown and R. Linderman, “Algorithm De-
velopment for an Airborne Real-Time STAP
Demonsttration,” Proc. of the IEEE National
Radar Conference, Syracuse, NY, May 13-15,
1997.

[7] A. Choudhary, W. Liao, D. Weiner, P. Varsh-
ney, R. Linderman, M. Linderman, and R.
Brown, “Design, Implementation and Evalua-
tion of Parallel Pipelined STAP on Parallel
Computers,” IEEE Trans. on Aerospace and
Electrical Systems, vol. 36, pp 528-548, April
2000.

2

Figure 1: System throughput

3

	Abstract
	Introduction
	Experimental Setup
	Results
	Conclusions
	Acknowledgements
	References

