
A Transformational Approach to High Performance Embedded Computing

Wim Böhm
Colorado State University

Fort Collins, CO

Jeffrey Hammes
SRC Computers, Inc.
Colorado Springs, CO

1. Introduction

This paper describes a transformational, high level lan-
guage approach to High Performance Embedded Comput-
ing on the SRC-6 machine and its MAPTM reconfigurable
hardware. A program is initially written in pure C and
compiled by the MAP C Compiler. Then, using feed-
back from the MAP C compiler, the program is succes-
sively transformed manually to achieve better performance.
These transformations avoid certain inefficiencies, such as
re-reading values from memory, loop slowdown caused
by loop carried dependencies, and underutilizing memory
bandwidth. We discuss the transformations in the context
of the Wavelet Versatility Benchmark and the Gauss-Seidel
iterative linear equation solver.

FPGAs use a large number of pins to connect to memo-
ries. They do not have caches, but they have on-chip block
RAM, allowing the programmer to decide what data stays
on chip. Also, fine grain operation level parallelism com-
bined with pipelining makes it possible for FPGAs to exe-
cute an inner loop body in one clock cycle. These character-
istics provide a simple, deterministic performance model,
allowing the programmer to work towards a well defined
goal: store hot data structures on chip either in block RAM
or in registers, create inner loop bodies that execute in one
clock cycle and use the full memory bandwidth of the ma-
chine by loop unrolling.

2 The SRC-6 and MAP Compiler

The SRC-6 machine contains a pair of dual-processor
Pentium IV boards, running Linux, and two SRC-developed
FPGA-based reconfigurable processors called MAPs. Each
MAP contains two Xilinx Virtex−IITM FPGAs, six banks
of dual-ported SRAM On Board Memory (OBM) totaling
24 Mbytes, and a control FPGA containing a DMA engine
that manages memory transfers into and out of the OBM.
DMAs can take place concurrently with executing FPGA
code. Both user FPGAs have access to the OBM banks,
though only one can access a given memory at a time. Each
of the six memory banks contains 512K 64-bit words (4
Mbytes). The user FPGAs are clocked at a fixed frequency

of 100 MHz. Each OBM bank can handle one write or read
from a user FPGA in each clock.

Using a simple directive the user allocates off chip ar-
rays onto OBM banks. The MAP Compiler allocates local
arrays to the FPGAs block RAM and local scalar variables
in registers. The MAP compiler front end produces a con-
trol flow graph (CFG) of basic blocks and directed control
flow edges between the blocks. Next the MAP Compiler
translates each block into its own dataflow graph (DFG)
that exposes instruction-level parallelism. It then merges
the DFG fragments that compose an innermost loop into a
single pipelined code block that includes a driver module
for firing loop iterations. The driver will fire one loop iter-
ation on each clock, unless data dependencies or multiple
accesses to a bank force it to run slower. The DFGs for
the code blocks are then mapped to Verilog, using straight-
forward instantiations of pre-defined macros. The Verilog
is synthesized and place-and-routed using commercial soft-
ware.

The MAP Compiler allows a user to create “user-
macros” in Verilog. Their semantics differs from functions
in C in that they can retain state between calls. This al-
lows for program transformations providing code optimiza-
tion beyond straight forward C compilation.

3 Wavelet Versatility Benchmark

The Wavelet Versatility Benchmark is part of a bench-
mark suite for evaluating configurable computing systems.
This suite was produced by Honeywell as part of the
DARPA/ITO ACS (Adaptive Computing Systems) pro-
gram [2]. The Wavelet Benchmark consists of four phases:
Wavelet Transform, Quantization, Run-Length Encoding
and Entropy Encoding.

The Wavelet Transforms perform a 5x5 convolution of
an input image stepping by 2 in both horizontal and verti-
cal directions, reading from one OBM and writing to four.
In the initial pure C implementation of this convolution, val-
ues are re-read on average 2.5 times. This can be avoided by
using system-macros that implement a delay queue mecha-
nism [1]. In the next transformation, four pixels are packed
in one word, and two horizontally adjacent convolutions are



performed in parallel.
The initial implementation of the Quantization, Run-

Length Encoding and Entropy Encoding phases read/write
pixels (packed after the Wavelet phase was optimized)
from/to OBMs. To avoid unnecessary memory traffic and
to fully benefit from pipelining, the three phases are loop
fused. The MAP compiler indicates loop slowdown, caused
by loop carried data dependencies in Run-Length Encod-
ing and Entropy Encoding in the form of (min) reduc-
tions and (summing and shifting) accumulations. These
can be avoided by using stateful reduction and accumula-
tor macros.

A final transformation distributes the program in a coarse
grain parallel fashion over the two user FPGAS. Its execu-
tion on the MAP produces bit-identical results to the Hon-
eywell reference code and achieves a speedup of 38 when
compared to the reference code executed on a 2.8 GHz Pen-
tium IV.

4 Gauss Seidel

Gauss Seidel is an iterative linear system solver of diag-
onally dominant systemsAx = b. The inner loop of the
code recomputesx[i] using a vector inproduct:

for(i=0;i<n;i++) {
s = 0.0;
for(j=0;j<n;j++)

if (j != i) s += A[i*COL+j] * x[j];
x[i] = b[i] - s;

}

All A, b and x values are in single precision floating
point. In a first pure C implementation thex vector is al-
located in block RAM, whileA andb are allocated in one
OBM. When this code is compiled, the MAP compiler in-
dicates a loop slowdown becauses is both read and written
in the inner loop. This can be avoided by using a float-
ing point accumulator macro. This accumulator needs to be
able to accept a new input every clock cycle. It will have
a larger than one latency, as a floating point add takes 10
cycles on the MAP. This implies that the accumulator will
have to be parallelized internally. At the time of writing this
abstract, this and other floating point macros have not been
integrated in the MAP compiler yet.

In a next program transformation,k valuesx[i], x[i +
n/k], ..x[i + (k − 1)n/k] are updated in the innerj loop
in parallel. Because we can row block partition A and b
over six OBMs, a good value fork is 6. Thej loop reads
one value from each OBM and performs 6 multiplies and 6
adds.

Because we are using single precision floating point we
can pack two adjacent values in one word, thereby doubling
the amount of computation per communication. The inner
loop now performs 12 multiplies and 12 adds in each it-
eration. However, the MAP compiler now reports a loop

slowdown: because the inner loop is unrolled, two consecu-
tivex values are read from block RAM. This can be avoided
by stripe partitioning the odd and evenx elements over two
block RAMs.

The code currently runs in debug mode on a host ma-
chine. The MAP compiler backend for floating point oper-
ations will soon become available, and we will assess the
hardware performance of the Gauss Seidel codes. If the
most parallel version of the code with the 12 single clock
floating point accumulators can be placed and routed on the
FPGA, its inner loop will execute 24 floating point opera-
tions per clock cycle. At 100 MHz, this will represent 2.4
GFlops.

5 Conclusions and Future Work

In this paper we have argued that high performance em-
bedded computing can be achieved on the SRC-6 machine
and its MAP reconfigurable hardware by starting from a
pure C code and transforming this code stepwise using sys-
tem or user macros. For the codes we have studied, the
transformations 1) employ delay queues to avoid re-reading
from OBMs, 2) pack data items in words and 3) unroll
loops to increase bandwidth, 4) use accumulator macros to
avoid loop slowdown caused by loop carried dependencies,
5) fuse loops to avoid memory traffic, 6) partition arrays to
avoid multiple memory accesses in the same loop body, and
7) perform coarse grain task parallelization to shorten the
critical path of the complete application. In future work we
will implement sparse solvers and the NAS Parallel Bench-
mark suite.

References

[1] J. Hammes. Methodology for pipelining and fusing stenciled
loops. Technical Report SWP-009-00, SRC Computers, Inc.,
November 2003.

[2] R. Kohler. Benchmark specification document – versatility
stressmark. Technical Report CDRL A001, Rome Laboratory,
November 1997. Submitted by Honeywell, Inc.




